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Abstract
The prophet secretary problem is a combination of the prophet inequality and the secretary problem, where

elements are drawn from known independent distributions and arrive in uniformly random order. In this work,
we design 1) a 0.688-competitive algorithm, that breaks the 0.675 barrier of blind strategies (Correa, Saona,
Ziliotto, 2021), and 2) a 0.641-competitive algorithm for the prophet secretary matching problem, that breaks
the 1 − 1/e ≈ 0.632 barrier for the first time. Our second result also applies to the query-commit model of
weighted stochastic matching and improves the state-of-the-art ratio (Derakhshan and Farhadi, 2023).

1 Introduction
The study of prophet inequality dates back to the 1970s [31, 32] from optimal stopping theory. Consider n items
with independent random values arriving one by one in an adversarial order. The value distribution Fi of each
item i is known upfront to the algorithm, but the realization of value vi ∼ Fi is only revealed on the item’s arrival.
After seeing the item’s identity i and value vi, the algorithm decides immediately whether to accept the item and
collect its value; the algorithm can accept at most one item in this problem. The goal is to maximize the expected
value of the accepted item and compete against the prophet, i.e., the expected maximum value E[maxi vi]. It is
known that the optimal competitive ratio is 1

2 for this problem.
A fundamental extension of the prophet inequality is prophet matching. Consider an underlying bipartite

graph with edge weights drawn from known distributions. The vertices on one side are known upfront and those
on the other side arrive online. On the arrival of an online vertex vi, the weights of its incident edges are revealed
and the algorithm decides whether to match vi and to which offline vertex. The classic prophet inequality is
captured by this model with one offline vertex. Feldman, Gravin, and Lucier [19] gave a tight 1

2 competitive
algorithm for the matching setting, and their result was further generalized to settings when all vertices arrive
online [17].

In this work, we consider the secretary variants (a.k.a. the random order variants) of prophet inequality and
prophet matching, i.e., the setting where the arrival order of items (resp. vertices) is uniformly at random.

The study of prophet secretary was initiated by Esfandiari et al. [16], who designed a 1 − 1/e ≈
0.632 competitive algorithm and provided an upper bound of 0.75.1 Since then, a sequence of follow-up
works [3, 7, 10, 23, 25] have focused on closing the gap. The state-of-the-art lower and upper bounds are 0.672
by Harb [25] and 0.723 by Giambartolomei et al. [23] respectively.

Less progress has been made on the prophet secretary matching problem. Ehsani et al. [15] gave a 1 − 1/e
competitive algorithm. Very recently, the 1− 1/e barrier was surpassed in two special cases: 1) the i.i.d. setting
studied by Yan [40] and Qiu et al. [37]; and 2) the query-commit setting studied by Derakhshan and Farhadi
[12]. Beating 1− 1/e for the general case of prophet secretary matching remains one of the most intriguing open
questions to the online algorithms community.
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1.1 Our Contributions
Result for Prophet Secretary. We design a 0.688 competitive algorithm for the prophet secretary problem.

Besides the improvement over the state-of-the-art 0.672 ratio, our result further surpasses the 0.675 barrier of
blind strategies [10], the family of algorithms that Correa et al. [10] and Harb [25] focused on. Blind strategies rely
on only the distribution of the maximum value, but not the fine-grained distributional information of individual
items’ values. Intuitively, such fine-grained information must be crucial because the items are heterogeneous in the
prophet secretary problem. However, it is technically challenging to incorporate such information to design and
analyze item-dependent strategies: changing the strategy for one item would unavoidably affect the probability
of accepting other items since we can accept only one of them.

Technique: Activation-Based Algorithms. We introduce two ideas to address this difficulty. First, we
change our point of view from designing acceptance probabilities to choosing activation rates. In general, an
online algorithm is defined by the probability of accepting an item based on its identity i, value v, and the set
of future items that will arrive later. Following the conventional wisdom, the current item’s arrival time t is
a good surrogate for aggregating information about exponentially many possible sets of future items over their
random arrivals. Here, we interpret the random order as having each item arrive within a time horizon from 0 to
1 uniformly at random. In short, algorithms are represented by the acceptance probabilities for item i when it
has value v and arrives at time t. However, it is difficult to analyze the algorithms based on this representation.

By contrast, we will consider the activation rates avi (t) for item i when it has value v and arrives at time t,
and the overall activation rates Ai(t) = Ev∼Fi

[avi (t)] of the item at time t. We activate this item (and accept it
if no item has been accepted yet) with probability:

gvi (t) = avi (t) · e−
∫ t
0
Ai(x)dx .

This new viewpoint offers two useful invariants. By definition, the probability that we activate item i before
time t equals: ∫ t

0

Ev∼Fi [g
v
i (x)] dx = 1− e−

∫ t
0
Ai(x)dx .

Hence, the activation events effectively follow a Poisson process with rates Ai(t). Accordingly, the probability
that we activate item i with value v and arrival time t is:

Pr [vi = v] · avi (t) · e−
∫ t
0

∑n
j=1 Aj(x)dx︸ ︷︷ ︸
(⋆)

dt .

Note that the second part (⋆) is independent of the item’s identity i and value v. Therefore, we can simplify
the dependence of different items’ strategies by introducing an upper bound on

∑n
j=1 Aj(t) for any time t. Subject

to this invariant, we can freely design the activation rates avi (t) for each item i and value v to approximately
match its contribution to the prophet benchmark.

To further simplify the analysis, we focus on activation rates avi (t) that are step functions that change their
values at a common threshold time. We demonstrate the effectiveness of this viewpoint and such simple step
activation rates in Section 2.4.2 by proving a 0.694 competitive ratio when all items are small in the sense that
each contributes only o(1) to the prophet benchmark.

Technique: Significance of the Largest Item. To further handle the general case of prophet secretary,
we will focus on the item i0 with the largest probability of being selected by the prophet. This is partly inspired
by the existing hard instances (e.g., [7, 10, 23]), all of which involve one large item and many small items. The
significance of the largest item is twofold: 1) we need to design a special strategy for it beyond the step-function
activation rates, and 2) its characteristics provide sufficient information for selecting the invariants for the other
items’ activation rates.

Why do we need a special strategy for this largest item? Consider the extreme case when it is the only item
that matters. Intuitively, we would like to select it with certainty on its arrival. However, we cannot do that using
the step-function activation rates. Within a time interval where the activation rates avi (t) remain a constant,
the e−

∫ t
0
Ai(x)dx term decreases the activation probability over time. This decrease is mild for smaller items,

but could be substantial for the largest item. Remarkably, this seemingly trivial instance plays an important
role of establishing the 0.675 barrier for blind strategies [10]. Motivated by this extreme case, we let the largest

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited



item’s activation probability rather than its activation rate be piece-wise constant. While it is difficult to analyze
algorithms based on the representation by activation/acceptance probabilities in general, we show that it is
manageable to do that for just one largest item. This special treatment of just one largest item is sufficient for
breaking the 0.675 barrier.

We will consider two characteristics of this largest item: its probability of being selected by the prophet, i.e.,
x0 = Pr[vi0 = maxj vj ], and a quantity h0 that measures the extent to which item i0 would be selected by the
prophet with probability more than half, over the randomness of the other items’ values. Based on just x0 and h0,
we will choose the (1) invariants

∑
j ̸=i0

Aj(t) for the activation rates of other items, (2) the shared threshold time
for the step-function activation rates of other items, and (3) the three-stage step-function activation probabilities
of the largest item i0. It is surprising that these two characteristics of the largest item alone are sufficient for
choosing all important invariants for our algorithm and analysis.

Result for Prophet Secretary Matching. We design a 0.641-competitive algorithm for the prophet
secretary matching problem, breaking the 1− 1/e barrier for the first time. As a corollary of this result, we also
improve the state-of-the-art ratio of the query-commit setting from 0.633 [12] to 0.641 through a reduction [11, 22]
from the query-commit model to the secretary model.

Summary of Techniques for Prophet Secretary Matching. We start by extending the activation-based
framework to matching. First, let us consider a simple strategy: upon the arrival of an online vertex, assign it
to an offline vertex with probability proportional to how likely the prophet would match them. We remark that
the assignment is independent of the arrival of earlier vertices and their matching results. Then, from each offline
vertex’s viewpoint, it may treat the online vertices (more precisely, the corresponding edges) as online items in
the prophet secretary problem, treating those not assigned to it as having zero values.

However, the online stochastic matching literature suggests that we should not naïvely follow this approach
and apply the two-stage step-function activation rates from prophet secretary, or we would miss the opportunity of
exploiting second-chance (re-)assignments (a.k.a. the power of two choices). If an offline vertex is already matched,
we should no longer assign online vertices to it, but instead redirect the opportunities to other unmatched offline
vertices. Hence, we introduce a third stage into the activation-based algorithm, which has the same activation
rates as the second stage, but takes into account the assignments redirected from the other offline vertices.
This may be viewed as reinterpreting the three-stage algorithm by Yan [40] for the i.i.d. special case within the
activation-based framework. By doing so, we achieve the same 0.645 competitive ratio but more generally for
all non-i.i.d. instances in which all edges are small, i.e., when each edge contributes only o(1) to the prophet
benchmark.

On the other hand, the worst-case competitive ratio of this approach degenerates to 1 − 1/e if there is a
large edge adjacent to every offline vertex. To complement this scenario, we introduce a variant of the random
order contention resolution scheme (RCRS) algorithm for matching [21, 33]. This may be viewed under the
activation-based framework as follows. For each offline vertex u and its largest edge (u, v), let its adjacent edges
other than (u, v) have constant activation rates; let edge (u, v)’s activation probability be a 0-1 step-function.
This is consistent with our approach for the prophet secretary problem, but the design of activation rates and
probabilities is simpler due to the complications in the analysis of the more general matching problem, and the
fact that we only need to beat the 1− 1

e barrier in this case.
We show that a hybrid algorithm that randomizes over the above two approaches achieves the stated 0.641

competitive ratio.

1.2 Related Works Dütting et al. [14] studied the computational complexity of the optimal online algorithm
for prophet secretary and gave a PTAS, though it does not imply any competitive ratio of the optimal online
algorithm. Abolhassani et al. [1] and Liu et al. [34] studied the prophet secretary problem under small-item
assumptions. They proved that if either 1) every distribution appears sufficiently many times [1, 34] or 2) every
distribution has only a negligible probability of being non-zero [34], there exists a 0.745-competitive algorithm,
matching the optimal competitive ratio as in the i.i.d. setting.

The order-selection prophet inequality lies between the i.i.d. setting and the secretary setting. In this variant,
the algorithm is given the extra power of selecting the arrival order of the items. This is motivated by the
application of prophet inequalities to sequential posted pricing mechanisms, and has been studied by [5, 7, 8, 36].
The current state-of-the-art competitive ratio is 0.725 by Bubna and Chiplunkar [7].

Besides matching, the prophet inequality has also been generalized to other combinatorial settings, including
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matroids [30], combinatorial auctions [13, 19], and general downward-closed constraints [38]. Ehsani et al. [15]
also studied the prophet secretary problem under matroid constraints and achieved a competitive ratio of 1−1/e.
Beating this ratio for general matroid constraints remains an important open question.

Finally, the unweighted and vertex-weighted online stochastic matching problems have attracted a lot of
attention in the online algorithms community [4, 6, 18, 24, 27, 28, 35, 39]. Most of these works assumed i.i.d.
arrivals of online vertices, in order to surpass the optimal 1 − 1/e competitive ratio of online (vertex-weighted)
bipartite matching [2, 29].

2 Prophet Secretary
2.1 Model Throughout the paper, we use the continuous arrival time formulation of the prophet secretary
problem. There are n items with non-negative values v1, . . . , vn drawn independently from distributions
F1, . . . , Fn. For the ease of exposition, we make two assumptions without loss of generality. First, we consider
discrete distributions, since continuous distributions can be approximated up to an arbitrary accuracy by discrete
distributions. Second, we assume that the distributions have disjoint supports so that the maximum value is
always unique. This can be achieved without loss of generality by adding an infinitesimal εi to the values from
Fi for tie-breaking. We shall use pvi to denote the probability that vi = v.

The items arrive within a time horizon between 0 and 1, where the arrival time ti of item i is drawn i.i.d.
from the uniform distribution over [0, 1]. The algorithm, only knowing F1, . . . , Fn, is presented with item i at its
arrival time ti. Upon item i’s arrival, the algorithm sees the its identity i, realized value vi, and arrival time ti,
and must decide whether to accept or reject item i immediately. If the algorithm accepts item i, it collects the
value vi; otherwise, the algorithm continues to the next item. The algorithm can accept at most one item and
the goal is to maximize the expected value of the accepted item.

Following standard competitive analysis, we compare an online algorithm’s expected objective to the expected
offline optimum (a.k.a., the prophet), i.e. E[maxi vi]. An algorithm is Γ-competitive if its expected accepted value
is at least Γ times the expected offline optimum.

Continuous Arrival Time vs. Discrete Arrival Order. We remark that the continuous time model is
equivalent to the classical discrete random order model of prophet secretary. The discrete random order model
samples a permutation π of the items uniformly at random over all n! possible permutations. Then, the items
arrive in a sequence according to π. On one hand, any algorithm for the discrete random order model can be
simulated in the continuous time model, by letting π be the permutation of the items in ascending order of their
arrival times ti. On the other hand, any algorithm for the continuous time model can be simulated in the discrete
random order model by first sampling t(1) ≤ t(2) ≤ · · · ≤ t(n) i.i.d. from the uniform distribution over [0, 1], sorted
in ascending order, and letting t(π(i)) be the arrival time of item i.

2.2 Our Result

Theorem 2.1. There exists a 0.688-competitive algorithm for prophet secretary.

Prior to our work, the state-of-the-art is a 0.672-competitive algorithm [9, 26]. This algorithm is a blind
strategy; Correa, Saona, and Ziliotto [9] showed that no blind strategy can be better than 0.675 competitive. Our
result breaks this barrier.

Our result can also be viewed as an exploration on the trade-off between the complexity of the state space
and the approximate optimality of the online algorithms. On one hand, the online optimal algorithm based on
dynamic programming has an exponential-size state space. When it decides whether to accept an item i, the
state consists of the item’s identity i, value vi, arrival time ti, and the subset of items that have not yet arrived.
In particular, the last component makes the state space exponentially large (see Dütting et al. [14] for a PTAS
that discretizes of the state space down to polynomial in n but doubly exponential in 1

ε ). On the other hand, all
existing algorithms in the literature of competitive analysis for prophet secretary, including the aforementioned
blind strategies, decide whether to accept an item based only on this item’s value and arrival time, but oblivious
to its identity and the subset of remaining items. By contrast, our algorithm will further take into account the
current item’s identity, on top of its value and arrival time, to decide whether to accept the item.

The rest of the section is organized as follows. Section 2.3 introduces the framework of activation-based online
algorithms, and how to analyze their competitive ratios. Then, Section 2.4 demonstrates two simple applications
of this framework as warm-ups. Finally, Section 2.5 presents a 0.688-competitive algorithm under this framework,
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and proves Theorem 2.1.

2.3 Activation-Based Online Algorithms

2.3.1 General Framework An activation-based online algorithm is as follows. Upon the arrival of an item,
we see its identity i, value v ∼ Fi, and arrival time t. Note that we suppress the subscript i in the value and
arrival time for notation simplicity as the item’s identity i will always be clear from context. Then, we decide
whether to activate the item or not based on an activation probability 0 ≤ gvi (t) ≤ 1, depending on i, v, and t,
but importantly, independent of the subset of items that have not yet arrived. Finally, we accept an item if it
is the first activated item. By definition, an activation-based online algorithm is characterized by the activation
probabilities gvi (t) ∈ [0, 1].

Activation Framework

For time t from 0 to 1:

(1) If item i arrives with value v, activate it with activation probability gvi (t).

(2) Accept item i if it is the first activated item.

Now we show two basic properties of these algorithms.

Lemma 2.1. The probability of activating item i before time θ is
∫ θ

0
Ev∼Fi

[gvi (t)] dt.

Proof. We will first consider the probability of activating item i with value v before time θ. This event can be
decomposed into three sub-events: (1) the item arrives at time t ≤ θ; (2) the item has value v, and (3) the
algorithm activates the item.

Recall that the arrival time t distributes uniformly over [0, 1], and the probability of drawing value v from
Fi is pvi . Note that t and v are independent. Further, conditioned on the first two sub-events, the third happens
with probability gvi (x). Hence, the probability of activating item i with value v before time θ is:∫ θ

0

pvi g
v
i (t) dt .

Summing over all possible values v, the probability of activating a item i before time θ is:
∫ θ

0

∑
v p

v
i g

v
i (t) dt =∫ θ

0
Ev∼Fi [g

v
i (t)] dt.

Lemma 2.2. The probability of accepting item i with value v before time θ is:∫ θ

0

pvi g
v
i (t)

∏
j ̸=i

(
1−

∫ t

0

E
v∼Fj

[
gvj (x)

]
dx

)
dt .

Proof. For any time t ≤ θ, the event that item i is accepted at time t can be decomposed into three independent
sub-events: (1) item i is has value v at time t; (2) item i is activated at time t, and (3) any item j ̸= i is not
activated before time t. The first sub-event happens with probability pvi , and the second sub-event happens with
probability gvi (t). By Lemma 2.1, the probability of activating item j before time t is

∫ t

0
Ev∼Fj [g

v
j (x)] dx, thus the

third sub-event happens with probability
∏

j ̸=i

(
1 −

∫ t

0
Ev∼Fj

[gvj (x)] dx
)
. Together, the probability of accepting

item i with value v before time θ is as stated.

2.3.2 Activation Rates This subsection presents an alternative representation of the activation probabilities
gvi (t) that will simplify parts of the subsequent analysis. Formally, for each item i, we focus on activation
probabilities in the following form:

gvi (t) = avi (t)e
−

∫ t
0
Ai(x) dx , ∀i, v, t
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where Ai(x)
def
==

∑
v p

v
i a

v
i (x) = Ev∼Fi

[avi (x)]. We call avi (t) the activation rate of v at time t. We say that the
activation rate avi (t) is well-defined if the corresponding activation probability gvi (t) is at most 1 for every i, t, v.

Lemma 2.3. The probability of activating item i before a threshold time θ is 1− e−
∫ θ
0
Ai(t) dt.

This lemma justifies why we call avi (t) the activation rate, as its conclusion resembles the form of a Poisson
activation process with rate Ai(t).

Proof. Replacing gvi (t) with avi (t)e
−

∫ t
0
Ai(x) dx in Lemma 2.1, the probability of activating item i before time θ is:∫ θ

0

Ev [a
v
i (t)] e

−
∫ t
0
Ai(x) dx dt =

∫ θ

0

Ai(t)e
−

∫ t
0
Ai(x) dx dt = 1− e−

∫ θ
0
Ai(t) dt .

Lemma 2.4. The probability of accepting item i with value v is:∫ 1

0

pvi a
v
i (t)e

−
∫ t
0

∑
j Aj(x) dx dt .

Proof. We substitute gvi (t) with avi (t)e
−

∫ t
0
Ai(x) dx in Lemma 2.2 and the probability that item j is not activated

before time t with e−
∫ t
0
Aj(x) dx by Lemma 2.4. Hence, the probability of accepting item i with value v is:∫ 1

0

pvi a
v
i (t)e

−
∫ t
0
Ai(x) dx

∏
j ̸=i

(
e−

∫ t
0
Aj(x) dx

)
dt =

∫ 1

0

pvi a
v
i (t)e

−
∫ t
0

∑
j Aj(x) dx dt .

2.3.3 Sufficient Condition for Competitive Analysis For every item i and value v, we denote the
(conditional) probability that vi = v is the maximum value as the following:

xv
i

def
== pvi ·

∏
j ̸=i

Pr [vj < v] and ρvi
def
==

∏
j ̸=i

Pr [vj < v] .

We list the following properties of xv
i and ρvi that are straightforward to verify.

Lemma 2.5. 1) xv
i = pvi ρ

v
i ; 2) ρvi ≤ 1 is non-decreasing in v; and 3)

∑
i,v x

v
i = 1.

Our competitive analysis is induced by the following stochastic dominance.

Lemma 2.6. An online algorithm is Γ-competitive if for any item i and any value v:∫ 1

0

pvi g
v
i (t)

∏
j ̸=i

(
1−

∫ t

0

E
vj∼Fj

[
g
vj
j (x)

]
dx

)
dt ≥ Γ · xv

i = Γ · pvi ρvi .

Proof. Multiplying the inequality by v and summing over all v and i, the left hand side gives the gain from the
algorithm, and the right hand side is Γ of the offline optimal gain.

2.4 Warm-ups This subsection presents two warm-up algorithms that use simple activation rates. The first
algorithm considers a constant activation rate avi (t) = ρvi for any item i and any value v. The second algorithm
considers a threshold time β, and lets avi (t) be a step function that changes its value at time β for any item i and
value v.
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2.4.1 Constant Activation Rates We now present the Constant Activation Rates algorithm, and prove that
it is 1− 1

e competitive. We note that it is exactly the (1− 1
e )-selectable RCRS algorithm by Lee and Singla [33],

rewritten in our activation-based framework.

Constant Activation Rates [33]

For time t from 0 to 1:

(a) If item i arrives with value v, activate it with activation rate avi (t) = ρvi .

(b) Accept item i if it is the first activated item.

Theorem 2.2. Constant Activation Rates is
(
1− 1

e

)
-competitive.

Proof. Recall that by definition of Ai(t), we have Ai(t) =
∑

v p
v
i ρ

v
i =

∑
v x

v
i . According to Lemma 2.4, the

probability of accepting item i with value v is:∫ 1

0

pvi ρ
v
i e

−
∑

j

∫ t
0
Aj(x) dx dt = xv

i

∫ 1

0

e−t·
∑

j

∑
v xv

j dt = xv
i

∫ 1

0

e−t dt =

(
1− 1

e

)
xv
i .

Here we use the property that
∑

j

∑
v x

v
j = 1 (Lemma 2.5). Further by Lemma 2.6, we get that the algorithm is(

1− 1
e

)
-competitive .

Why are constant activation rates suboptimal? Intuitively, we would like to let the activation rate be larger,
e.g., converging to 1 when the time approaches 1, because at that time there would be few items left and thus,
we should take any occurring item. Accordingly, the activation rate should be smaller at the beginning, unless
the realized value is very high, because we anticipate more items to come in the future.

2.4.2 Step Activation Rates The next warm-up algorithm implements the above idea by letting the activation
rate avi (t) for any item i and value v be a step function that increases at a threshold time β. We maintain the
invariant that the activation rates in the two stages sum to 2 · ρvi , but let the rate in the second stage be as high
as possible.

Step Activation Rates

Parameter: β = 0.367.

For time t from 0 to 1:

(a) If item i arrives with value v, activate it with activation rate:

avi (t) =

{
(2ρvi − 1)+ if t ∈ [0, β),

2ρvi − (2ρvi − 1)+ if t ∈ [β, 1].

(b) Accept item i if it is the first activated item.

We will analyze this algorithm under the assumption that:

(2.1) h
def
==

∑
i,v

(2xv
i − pvi )

+ ≤ 1− ln 2 .

This is inspired by a property from the stochastic online matching literature proved by Manshadi et al. [35]. It
would hold up to an o(1) additive error if every item i is small in the sense that it has the highest value with
probability only o(1), namely,

∑
v x

v
i = o(1). A formal proof of this claim is deferred to Appendix B.
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Parameter of the Invariant. We remark that there is actually a parameter s for the invariant that we
can optimize for the above algorithm: the activation rates in the two stages sum to s · ρvi . In the main body of
the paper, we fix s to be 2 both in this warm-up algorithm and our main algorithm in the next subsection. This
simplification makes it clear the connection between the assumption (2.1) and the constraint [28] from previous
works. The algorithm for general s is provided in Appendix C.

Lemma 2.7. We have: ∑
j

Aj(t) =

{
h if 0 ≤ t < β;
2− h if β ≤ t ≤ 1.

Proof. By the definition of Aj(t)’s, we have
∑

j Aj(t) =
∑

j

∑
v p

v
ja

v
j (t). Further by the definition of h, we

have
∑

j

∑
v p

v
j (2ρ

v
j − 1)+ =

∑
j

∑
v(2x

v
j − pvj )

+ = h. Then, according to Lemma 2.5, we have
∑

j

∑
v p

v
jρ

v
j =∑

j

∑
v x

v
j = 1, and thus,

∑
j

∑
v p

v
j (2ρ

v
j − (2ρvj − 1)+) = 2− h.

Theorem 2.3. Assuming (2.1), Step Activation Rates is 0.694-competitive.

Proof. We denote the cumulative total activation rates up to time t as:

G(t)
def
==

∫ t

0

∑
j

Aj(t) dy =

{
h · t if 0 ≤ t < β;
h · β + (2− h) · (t− β) if β ≤ t ≤ 1.

By Lemma 2.4, the probability of accepting item i when its value is v equals:

∫ 1

0

pvi a
v
i (t)e

−
∫ t
0

∑
j Aj(t) dy dt

= pvi ·
(
(2ρvi − 1)+

∫ β

0

e−G(t) dt+
(
2ρvi − (2ρvi − 1)+

) ∫ 1

β

e−G(t) dt

)
= pvi ·

(
(2ρvi − 1)+ · 1− e−hβ

h︸ ︷︷ ︸
(a)

+
(
2ρvi − (2ρvi − 1)+

)
· e

−hβ − e−(2−h)+(2−2h)β

2− h︸ ︷︷ ︸
(b)

)
.

Our choice of threshold time β ≈ 0.367 makes (a) ≈ (b) > 0.347, i.e., half the claimed competitive ratio, when
h = 1− ln 2. For smaller h, we still have (a), (b) > 0.347 because both (a) and (b) are decreasing in h. Hence the
above bound is at least:

pvi ·
(
(2ρvi − 1)+ +

(
2ρvi − (2ρvi − 1)+

))
· 0.347 = 0.694 · pvi ρvi .

By Lemma 2.6, this algorithm is 0.694-competitive.

2.5 Step Activation Rates Except One Large Item Finally, we present our algorithm for the general case
of prophet secretary. As mentioned in the last subsection, we shall optimize the parameter s from the invariant to
maximize our competitive ratio. Within this subsection, we fix s = 2 and establish a competitive ratio of 0.686.
The more general version of our algorithm and its analysis, which prove the 0.688 competitive ratio stated in
Theorem 2.1, are provided in Appendix C.

Recall that the analysis in Section 2.4.2 relies on the assumption that
∑

i,v(2x
v
i − pvi )

+ ≤ 1− ln 2. To get rid
of the assumption, we consider the importance of the largest item i0 = argmaxi

∑
v x

v
i :

x0
def
==

∑
v

xv
i0 = Pr

[
vi0 = max

j
vj

]
.
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Lemma 2.8. For any instance of prophet secretary in which the largest item i0’s probability of having the highest
value is x0, we have:∑

i,v

(
2xv

i − pvi
)+ ≤ h2(x0)

def
== max

t∈[0,x0)
t+

∑
k≥0

(
2x0 −

x0

1− t− kx0

)+
.

Moreover, limx→0+ h2(x) = 1− ln 2, and h2(1) = 1.

Intuitively, (2xv
i −pvi )

+ captures the extent to which an item-value pair (i, v) is the largest more than half the
time when it is present. Lemma 2.8 upper bounds the sum of this quantity over all item-value pairs, depending
on the characteristics of the largest item. It generalizes (2.1) by Manshadi et al. [35] in the context of i.i.d. online
stochastic matching, which plays an important role in that literature (e.g., [27, 28, 35, 40]).

In Appendix B, we prove the following generalized statement to optimize over s.

Lemma 2.9. For any instance of prophet secretary in which the largest item i0’s probability of having the highest
value is x0, we have:

1

s− 1
·
∑
i,v

(
sxv

i − pvi
)+ ≤ hs(x0)

def
== max

t∈[0,x0)
t+

1

s− 1

∑
k≥0

(
sx0 −

x0

1− t− kx0

)+
.

This immediately implies Lemma 2.8, which is the special case when s = 2. We will also use this lemma in
the prophet secretary matching section.

Figure 1 presents our algorithm for the prophet secretary problem. It handles the largest item and the other
items using two different strategies.

For the largest item, we let its activation probabilities, rather than activation rates, be step functions that
change values at some thresholds β0 < β2 to be determined. We never activate this item from time 0 to β0. The
activation probabilities from time β0 to β2, and from time β2 to 1 sum to 2ρvi0 , twice the probability that the
largest item i0 has the highest value conditioned on its value being v; we further let the latter (from time β2 to 1)
be as large as possible.

For the other items, we let their activation rates be step functions that change values at some threshold β1 to
be determined. We will let β0 ≤ β1 ≤ β2 and hence, the choice of their subscripts. Like the warm-up case in the
last subsection, we also let the activate rates before and after the threshold β1 sum to 2ρvi . Unlike the warm-up
case, where we let the activation rates before β1 be as small as possible, here we let them be parameters zvi that
sum to (weighted by probability pvi ) a fixed invariant depending on the characteristics of the largest item.

We next prove that the algorithm is well-defined.

Lemma 2.10. There exist zvi ’s satisfying the stated constraints in (2) of Figure 1.

Proof. Note that (2ρvi − 1)+ ≤ ρvi , it suffices to show that∑
i ̸=i0

∑
v

pvi (2ρ
v
i − 1)+ ≤ min{h2(x0)− h0, 1− x0} ≤

∑
i ̸=i0

∑
v

pvi ρ
v
i .

The first inequality follows by:∑
i ̸=i0

∑
v

pvi (2ρ
v
i − 1)+ =

∑
i ̸=i0

∑
v

(2xv
i − pvi )

+

=
∑
i

∑
v

(2xv
i − pvi )

+ − h0 ≤ h2(x0)− h0 ,

The second inequality follows by
∑

i ̸=i0

∑
v p

v
i ρ

v
i =

∑
i ̸=i0

∑
v x

v
i = 1− x0.

Lemma 2.11. The activation rates and probabilities are well-defined, namely they are between 0 and 1.
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Step Activation Rates Except One Large Item

(1) Let i0 = argmaxi
∑

v x
v
i be the largest item, and let:

x0 =
∑
v

xv
i0 , zvi0 = (2ρvi0 − 1)+ , h0 =

∑
v

pvi0z
v
i0 .

(2) Calculate a set of zvi ’s for the remaining items i ̸= i0 such that:

hot
def
==

∑
i ̸=i0

∑
v

pvi z
v
i = min

{
h2(x0)− h0, 1− x0

}
, zvi ∈

[
(2ρvi − 1)+, ρvi

]
,

where h2(x0) is the function as defined in Lemma 2.8.

(3) Select threshold times β0 ≤ β1 ≤ β2 based on x0, h0 to maximize Equation (2.2).

(4) For time t from 0 to 1:

(a) If the largest item i0 arrives with value v, activate it with probability:

gvi0(t) =


0 if t ∈ [0, β0),

zvi0 if t ∈ [β0, β2),

2ρvi0 − zvi0 if t ∈ [β2, 1].

(b) If an item i ̸= i0 arrives with value v, activate it with activation rate:

avi (t) =

{
zvi if t ∈ [0, β1),

2ρvi − zvi if t ∈ [β1, 1].

(c) Accept the item if it is the first activated item.

Figure 1: Algorithm for Prophet Secretary

Proof. Recall that 0 ≤ xv
i ≤ ρvi ≤ 1. For any item i, we have 0 ≤ zvi ≤ ρvi ≤ 1, and 2ρvi − zvi = 2ρvi − (2ρvi − 1)+ =

min{2ρvi , 1} ∈ [0, 1].
Hence, for the largest item i0, the activation probability gvi0(t) is always between 0 and 1. For any

other item i ̸= i0, the activation rate avi (t) is between 0 and 1 and the resulting activation probability
gvi (t) = avi (t)e

−
∫ t
0
Ai(x) dx is also between 0 and 1.

We are now ready to prove Theorem 2.1, which says that the Step Activation Rates Except One Large Item
is 0.686-competitive.

Proof. [Proof of Theorem 2.1] We will leave β0 ≤ β1 ≤ β2 as parameters to be determined, and optimize them to
maximize the competitive ratio via a computer-aided search.

Largest Item. By Lemma 2.3, the probability that an item j ̸= i0 was not activated before time t is
e−

∫ t
0
Aj(x) dx, where Aj(x) equals

∑
v p

v
j z

v
j when x ∈ [0, β1] and equals 2

∑
v x

v
j −

∑
v p

v
j z

v
j otherwise.

By the definition of hot and
∑

j

∑
v x

v
j = 1 (Lemma 2.5), we have:

∑
j≠i0

Aj(x) =

{∑
j ̸=i0

∑
v p

v
j z

v
j = hot, for x ∈ [0, β1]∑

j ̸=i0
(2
∑

v x
v
j −

∑
v p

v
j z

v
j ) = 2(1− x0)− hot. for x ∈ [β1, 1]

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited



Thus, the probability of not having any item j ̸= i0 activated before time threshold t is:∏
j ̸=i0

e−
∫ t
0
Aj(x) dx = e−

∫ t
0

∑
j ̸=i0

Aj(x) dx = e−hot·t−2(1−x0−hot)·(t−β1)
+ def
== e−K(t) .

Then, according to Lemma 2.2, the probability of accepting item i0 value vi0 = v is:∫ 1

0

pvi0g
v
i0(t)e

−K(t) dt = pvi0

(
zvi0

∫ 1

β0

e−K(t) dt+ (ρvi0 − zvi0) · 2
∫ 1

β2

e−K(t) dt

)
≥ pvi0ρ

v
i0 ·min

(∫ 1

β0

e−K(t) dt, 2

∫ 1

β2

e−K(t) dt

)
.

Other Items. We define L(t) as the probability that item i0 is activated before time t. Then, according to
the definition of gvi0(t) and h0,

∑
v p

v
i0
gvi0(t) equals 0 for t ∈ [0, β0], equals h0 for t ∈ [β0, β2], and equals 2x0 − h0

for t ∈ [β2, 1]. Thus, by Lemma 2.1, we have

L(t) =

∫ t

0

∑
v

pvi0g
v
i0(x) dx = h0 · (t− β0)

+ + 2(x0 − h0) · (t− β2)
+.

Therefore, for any item i ̸= i0, according to Lemma 2.2, the probability of accepting item i with value v is
equal to: ∫ 1

0

pvi a
v
i (t)e

−
∫ t
0

∑
i Ai(x) dx(1− L(t))

∏
j ̸=i,i0

e−
∫ t
0
Aj(y) dy dt

= pvi

∫ 1

0

avi (t)
∏
j ̸=i0

e−
∫ t
0
Aj(y) dy(1− L(t)) dt

= pvi

∫ 1

0

avi (t)e
−K(t)(1− L(t)) dt

= pvi

(
zvi ·

∫ 1

0

e−K(t)(1− L(t)) dt+ (ρvi − zvi ) · 2
∫ 1

β1

e−K(t)(1− L(t)) dt

)
≥ pvi ρ

v
i ·min

(∫ 1

0

e−K(t)(1− L(t)) dt, 2

∫ 1

β1

e−K(t) (1− L(t)) dt

)
.

Choice of Parameters. Therefore, we define:

(2.2)
Γ(x0, h0, β0, β1, β2) = min

(∫ 1

β0

e−K(t) dt, 2

∫ 1

β2

e−K(t) dt,

∫ 1

0

e−K(t) (1− L(t)) dt, 2

∫ 1

β1

e−K(t) (1− L(t)) dt

)
,

which is a function with respect to x0, h0, β0, β1, β2. It remains to show that:

Lemma 2.12. For every x0 ∈ [0, 1] and h0 ∈ [0, x0], there exist 0 ≤ β0 ≤ β1 ≤ β2 ≤ 1, such that
Γ(x0, h0, β0, β1, β2) > 0.686.

We use a computer-aided search to numerically verify this lemma (see Appendix D). Then, taking such
β0, β1, β2 in the algorithm, we get the 0.686 competitive ratio by Lemma 2.6.

3 Prophet Secretary Matching
3.1 Preliminaries
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Model. Let there be an edge-weighted bipartite type graph G = (U, V,E,w), where U corresponds to the
set of offline vertices that are known in advance to the algorithm and V corresponds to the set of all possible
types of each online vertices.

There are n online vertices. Each online vertex vi has a type v ∈ V drawn independently from a known
distribution Fi, and an arrival time of ti drawn uniformly from [0, 1]. We use pvi to denote the probability of
vi = v. When vi arrives at time ti, its type is realized and the algorithm decides immediately whether to match
vi to an unmatched offline vertex u (if exists). The goal is to maximize the total weight of the selected matching
and to compete against the expected maximum matching.

LP Relaxation. Consider the following linear program for stochastic matching by Gamlath, Kale, and
Svensson [22].

LP: max
{x(u,v)

i }
:
∑
i,u,v

wuv · x(u,v)
i

subject to :
∑
u

x
(u,v)
i ≤ pvi ∀i ∈ [n], v ∈ V

∑
i

∑
v∈S

x
(u,v)
i ≤ 1−

∏
i

(
1−

∑
v∈S

pvi

)
∀u ∈ U, S ⊆ V

Fact 3.1. ([22]) This linear program can be solved efficiently and its value is an upper bound of the expected
optimum matching.

Our algorithm starts by solving the linear program and throughout the section, we use
{
x
(u,v)
i

}
to denote

the optimal solution of the LP. For each online vertex u, we consider the following quantities that shall be crucial
for our algorithm design:

∀i ∈ [n], u ∈ U, xu
i

def
==

∑
v

x
(u,v)
i , xu def

== max
i

xu
i , and hu

def
==

∑
i,v

(
2x

(u,v)
i − pvi

)+
.

According to the constraints of the LP and by Lemma 2.8, we have that hu ≤ h2(x
u).

Assumption. Without loss generality, we assume that the graph is 1-regular. I.e., for every offline vertex
u ∈ U ,

∑
i,v x

(u,v)
i = 1 and for every i ∈ [n],

∑
u,v x

(u,v)
i = 1. This can be achieved by first adding dummy offline

vertices and dummy online types to the type graph, and then introducing dummy online vertices to the instance.
A similar pre-processing step is applied by Fu et al. [21] (refer to Lemma 2 of [21] for a detailed construction).
Finally, we simulate the random arrival of the dummy online vertices on our own.

3.2 Overview of Our Result Our main result is a 0.641-competitive algorithm for the prophet secretary
matching problem, beating the 1− 1/e ≈ 0.632 barrier for the first time.

We introduce two algorithms that we call 1) Multistage Activation-based Matching (MAM) and 2) Constant
Activation Rate except One Large Vertex (CAR).

• Our Multistage Activation-based Matching algorithm is a generalization of the algorithm by Yan [40] that
works in the i.i.d. arrival setting. Our algorithm achieves the same competitive ratio of Yan for an arbitrary
“infinitesimal instance”, i.e., when xu = o(1) for every u ∈ U . In other words, an instance is infinitesimal if
every online vertex vi contributes o(1) to every offline vertex u in the offline maximum matching. Crucially,
our algorithm avoids the pre-processing step of Yan, which to our knowledge, is hard to generalize beyond
the i.i.d. case.
Formally, our algorithm matches each edge (u, vi = v) with probability ΓMAM(xu) · x(u,v)

i , where ΓMAM(·)
is a decreasing function with ΓMAM(0) ≈ 0.645 and ΓMAM(1) = 1 − 1/e. As an implication, the MAM
algorithm achieves the goal of beating 1− 1/e as long as every xu is bounded away from 1. This algorithm
and its analysis (including the definition of ΓMAM) are provided in Section 3.4.

• The second algorithm is built on the technique of random order contention resolution schemes. It is noticed
by Fu et al. [21] that the RCRS by Lee and Singla [33] can be adapted to a 1− 1/e competitive algorithm
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Figure 2: Competitive Ratio Curves For MAM, CAR, Hybrid

for the prophet secretary matching problem and the ratio is tight. Moreover, we observe that the worst-case
instance for the RCRS based approach is the infinitesimal case when xu’s are small.
To this end, we refine the RCRS algorithm by Lee and Singla so that our algorithm matches each edge
(u, vi = v) with probability ΓCAR(x

u), where ΓCAR(·) is an increasing function with ΓCAR(0) = 1− 1/e and
ΓCAR(1) =

√
3− 1 ≈ 0.732. This algorithm and its analysis (including the definition of ΓCAR) are provided

in Section 3.5.

Though each of the two algorithms only achieves a competitive ratio of 1− 1/e in the worst case, they nicely
complement each other. Finally, we apply a randomization between the two algorithms.

Theorem 3.1. A hybrid algorithm by running MAM with probability 0.8 and running CPR with probability 0.2
is at least 0.641-competitive for prophet secretary matching.

Proof. By Theorem 3.3 and Theorem 3.4, the hybrid algorithm matches each edge (u, vi = v) with probability

(0.8 · ΓMAM(xu) + 0.2 · ΓCAR(x
u)) · x(u,v)

i ≥ 0.641 · x(u,v)
i , ∀xu ∈ [0, 1] ,

where the inequality is verified with computer assistance. Refer to Figure 2. Recall that
∑

i,u,v wuv · x(u,v)
i is an

upper bound of the expected maximum matching. The property achieved directly implies a competitive ratio of
0.641.

3.3 Query-Commit Stochastic Bipartite Matching Our algorithm for the prophet secretary matching can
be applied to the query-commit stochastic bipartite matching problem. Consider a bipartite graph G = (U, V,E)
where each edge e is associated with a weight we and a probability pe. At each step, the algorithm queries the
existence of an edge e, which happens independently with probability pe. If the edge exists, the algorithm must
select it. The goal is to maximize the selected matching and competes against the optimum matching.

Gamlath, Kale, and Svensson [22] designed an 1−1/e approximation algorithm for this problem, and the ratio
is recently improved to 1−1/e+0.0014 by Derakhshan and Farhadi [12]. As an implication of Theorem 3.1 through
a folklore reduction [20, 21] from the query-commit model to secretary model, we also improve the state-of-the-art
approximation ratio of this problem. For completeness, we sketch a proof of the reduction in Appendix A.
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Iu1
Iu2

Iu3

0.4 0.24 0.36

vi = v

u1 u2 u3

ρ
(u1,v)
i = 0.4

ρ
(u2,v)
i = 0.24

ρ
(u3,v)
i = 0.36

Figure 3: Illustration of intervals Iu1
, Iu2

and Iu3
for vi = v.

Theorem 3.2. There exists a 0.641 approximation algorithm for the query-commit stochastic bipartite matching
problem.

3.4 Multistage Activation-based Matching In this section, we introduce the multistage activation-based
matching algorithm. We first recall the correlated sampling method of Jaillet and Lu [28].

Jaillet and Lu Sampling[28]. For every online vertex vi and type v:

• Consider an interval [0, 1] and align subintervals Iu of length ρ
(u,v)
i

def
==

x
(u,v)
i

pv
i

from left to right for each
offline vertex u ∈ U . Refer to Figure 3.

• Sample η uniformly at random from [0, 1]. Let η′ = η ± 1/2 such that η′ ∈ [0, 1].

• Let µv
i (u → u′)

def
== Pr[η ∈ Iu and η′ ∈ Iu′ ].

The quantities µv
i (u → u′) are important parameters of our algorithm and analysis. We list the following properties

of µv
i (u → u′) that are straightforward to verify.

Lemma 3.1. We have that

• µv
i (u → u′) = µv

i (u
′ → u);

•
∑

u′ ̸=u µ
v
i (u → u′) = ρ

(u,v)
i − (2ρ

(u,v)
i − 1)+ ≤ ρ

(u,v)
i .

Now, we present our algorithm, a generalization of the algorithm by Yan [40].
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Multistage Activation-based Matching

Parameters: β0 = 0.05, β1 = 0.75.
Notations: M(t), N(t) are the sets of matched and unmatched offline vertices at time t.

(1) First Stage: for t ∈ [0, β0), let a
(u,v)
i (t) = (2ρ

(u,v)
i − 1)+ for every u, v, i;

(2) Second Stage: for t ∈ [t0, β1), let a
(u,v)
i (t) = ρ

(u,v)
i for every u, v, i;

(3) If vertex vi arrives at time t ∈ [0, β1) with type v ∼ Fi:
propose to a random offline vertex u ∈ U with probability

(3.3) g
(u,v)
i (t) = a

(u,v)
i (t) · exp

(
−
∫ t

0

Au
i (y) dy

)
,

where Au
i (t)

def
== E

v
[a

(u,v)
i (t)] =

∑
v p

v
i · a

(u,v)
i (t).

Accept the edge (u, vi = v) if u is unmatched.

(4) Third Stage: at time β1, let a
(u,v)
i (t) for t ∈ [β1, 1) be the following:

if u is unmatched at time t1, for every v, i,

a
(u,v)
i (t) = ρ

(u,v)
i +

∑
u′ ̸=u

µv
i (u

′ → u) ·

(
1− exp

(
−
∫ β1

0

Au′

i (y) dy

))

+
∑

u′∈M(β1)

µv
i (u

′ → u) · exp

(
−
∫ β1

0

Au′

i (y) dy

)
,

else, let a
(u,v)
i (t) = 0 for every v, i.

(5) If vertex vi arrives at time t ∈ [β1, 1] with type v ∼ Fi:
propose to a random offline vertex u ∈ U with probability

(3.4) g
(u,v)
i (t) = a

(u,v)
i (t) · exp

(
−
∫ t

0

Au
i (y) dy

)
,

where Au
i (t)

def
== E

v
[2ρ

(u,v)
i − (2ρ

(u,v)
i − 1)+] =

∑
v p

v
i ·
(
2ρ

(u,v)
i − (2ρ

(u,v)
i − 1)+

)
.

Accept the edge (u, vi = v) if u is unmatched.

Our algorithm consists of three stages, in which the first two stages are non-adaptive and are similar to the
step activation rates algorithm for the prophet secretary problem; the third stage is adaptive to the randomness
of the instance and our algorithm from the first two stages.

The parameters a(u,v)i (t) play a similar role as the activation rates for the prophet secretary problem. We first
verify that the stated algorithm is well-defined. That is, the vector

{
g
(u,v)
i (t)

}
u

is a valid probability distribution
for every t ∈ [0, 1].

Lemma 3.2. For every v ∈ V, i ∈ [n], t ∈ [0, 1], we have
∑

u g
(u,v)
i (t) ≤ 1.

Proof. For t ∈ [0, β1), we have ∑
u

g
(u,v)
i (t) ≤

∑
u

a
(u,v)
i (t) ≤

∑
u

ρ
(u,v)
i = 1 .

For t ∈ [β1, 1], notice that a
(u,v)
i (t) = a

(u,v)
i (t1) and g

(u,v)
i (t) is decreasing in t. It suffices to verify that∑

u g
(u,v)
i (β1) ≤ 1. We redistribute the terms with factor µv

i (u
′ → u) in a

(u,v)
i (t) to u′ and consider the
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(redistributed) contribution of every u to the sum. If u ∈ M(β1), its contribution is:

ρ
(u,v)
i · exp

(
−
∫ β1

0

Au
i (y) dy

)

+
∑
u′ ̸=u

µv
i (u → u′) ·

(
1− exp

(
−
∫ β1

0

Au
i (y) dy

))
· exp

(
−
∫ β1

0

Au′

i (y) dy

)

≤ ρ
(u,v)
i · exp

(
−
∫ β1

0

Au
i (y) dy

)
+
∑
u′ ̸=u

µv
i (u → u′) ·

(
1− exp

(
−
∫ β1

0

Au
i (y) dy

))

≤ ρ
(u,v)
i · exp

(
−
∫ β1

0

Au
i (y) dy

)
+ ρ

(u,v)
i ·

(
1− exp

(
−
∫ β1

0

Au
i (y) dy

))
= ρ

(u,v)
i ,

where the first inequality is by dropping exponent term; the second inequality is by Lemma 3.1. Else u ∈ N(β1),
its contribution is:

∑
u′≠u

µv
i (u → u′) · exp

(
−
∫ β1

0

Au′

i (y) dy

)
≤
∑
u′ ̸=u

µv
i (u → u′) ≤ ρ

(u,v)
i .

Therefore, we have
∑

u g
(u,v)
i (β1) ≤

∑
u ρ

(u,v)
i = 1.

For every vertex u ∈ U and t ∈ [0, 1], let Au(t)
def
==

∑
i A

u
i (t) and Au

-i(t)
def
==

∑
j ̸=i A

u
j (t).

Lemma 3.3. We have:

Au(t) =


hu t ∈ [0, β0] ;

1 t ∈ (β0, β1] ;

2− hu t ∈ (β1, 1] .

Proof. For t ∈ [0, β0], we have Au(t) =
∑

i A
u
i (t) =

∑
i Ev[(2ρ

(u,v)
i − 1)+] = hu, where the last equality holds by

the definition of hu. For t ∈ (β0, β1], we have Au(t) =
∑

i Ev[ρ
(u,v)
i ] =

∑
i

∑
v p

v
i · ρ(u,v)i =

∑
i,v x

(u,v)
i = 1. For

t ∈ (β1, 1], we have Au(t) =
∑

i Ev[2ρ
(u,v)
i − (2ρ

(u,v)
i − 1)+] = 2− hu.

As a consequence, we define and calculate the following functions:

• c1(hu)
def
== 1−e−huβ0

hu
=
∫ β0

0
exp

(
−
∫ t

0
Au(y) dy

)
dt ;

• c2(hu)
def
== e−huβ0

(
1− e−(β1−β0)

)
=
∫ β1

β0
exp

(
−
∫ t

0
Au(y) dy

)
dt ;

• c3(hu)
def
== e−huβ0−(β1−β0) · 1−e−(2−hu)(1−β1)

2−hu
=
∫ 1

β1
exp

(
−
∫ t

0
Au(y) dy

)
dt .

Theorem 3.3. For every u ∈ U, v ∈ V, i ∈ [n], Multistage Proposal-based Matching matches edge (u, vi = v) with
probability ΓMAM(xu) · x(u,v)

i , where

ΓMAM(x)
def
== min

(
c1(h2(x)) + c2(h2(x)) + c3(h2(x)), c2(h2(x)) +

(
2− e−(β1−β0)

)
· c3(h2(x))

)
.

As an immediate corollary of the theorem, in the infinitesimal case when maxu xu = o(1), our algorithm achieves
a competitive ratio of ΓMAM(0+) = c2(1−ln 2)+(2−e−(β1−β0))c3(1−ln 2) ≈ 0.645. Note that we intentionally use
the same parameters β0, β1 as Yan [40] so that our competitive ratio is exactly the same as Yan’s ratio. Moreover,
the competitive ratio of the algorithm is at least ΓMAM(1) = 1− 1/e for all instances.
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Figure 4: A Plot of F1(h) = c1(h) + c2(h) + c3(h) and F2(h) = c2(h) + (2− e−(β1−β0))c3(h).

3.4.1 Proof of Theorem 3.3 From now on, we fix arbitrary u ∈ U, v ∈ V, i ∈ [n] and study the probability
that (u, vi = v) is matched by our algorithm. We shall prove that

(3.5) Pr [(u, vi = v) is matched] ≥ min
(
c1(hu) + c2(hu) + c3(hu), c2(hu) +

(
2− e−(β1−β0)

)
· c3(hu)

)
· x(u,v)

i .

This inequality together with the following lemma and that hu ≤ h2(x
u) would conclude the statement of the

theorem.

Lemma 3.4. The function
(
c1(h) + c2(h) + c3(h), c2(h) +

(
2− e−(β1−β0)

)
· c3(h)

)
is decreasing for h ∈ [0, 1] .

We omit the tedious formal proof of this lemma and provide a plot of the function. Refer to Figure 4.
The next lemma is crucial for proving Equation (3.5), that lower bounds the probability of u remains

unmatched on the arrival time ti = t of vertex vi.

Lemma 3.5. For every t ∈ [0, β1) and u ∈ U ,

Pr [u ∈ N(t) | ti = t] = exp

(
−
∫ t

0

Au
-i(y) dy

)
.

For every t ∈ [β1, 1] and u ̸= u′ ∈ U ,

Pr [u ∈ N(t) | ti = t] ≥ exp

(
−
∫ t

0

Au
-i(y) dy

)
;

Pr [u ∈ N(t), u′ ∈ M(β1) | ti = t] ≥ exp

(
−
∫ t

0

Au
-i(y) dy

)(
1− exp

(
−
∫ t1

0

Au′

-i (y) dy

))
Proof. For every t ∈ [0, β1) and u ∈ U , the statement and its proof is essentially the same of Lemma 2.3 for the
prophet secretary problem. Nevertheless, we include a proof for completeness.
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Pr [u ∈ N(t) | ti = t] =
∏
j ̸=i

Pr [j doesn’t propose u before t] =
∏
j ̸=i

(
1−

∑
v

pvi

∫ t

0

g
(u,v)
i (y) dy

)

=
∏
j ̸=i

(
1−

∫ t

0

Au
j (y) · exp

(
−
∫ y

0

Au
j (z) dz

)
dy

)

=
∏
j ̸=i

exp

(
−
∫ t

0

Au
i (y) dy

)
= exp

(
−
∫ t

0

Au
-i(y) dy

)
.

For any t ∈ [β1, 1] and u ̸= u′ ∈ U , conditioned on box i arrive exactly at t, we consider following hypothetical
algorithm for other boxes and for time range [1, t]. with activation probability ĝ

(·,v)
j (t). It use the same activation

method before t1, which means ĝ
(·,v)
j (t) = g

(·,v)
j (t), while for time t after t1, the algorithm proposed to u with

probability ĝ
(u,v)
j (t) = (2ρ

(u,v)
j − (2ρ

(u,v)
j − 1)+) · exp

(
−
∫ t

0
Au

j (y) dy
)

, and do not propose to other vertices.
Since the activation probability for vertex u of original algorithm is at most the probability in this algorithm

and the activation probability for vertex u′ is unchanged, the original probability of the event we concern is no
smaller than the the probability of the same event while in this hypothetical algorithm. Following we work on
the hypothetical algorithm, and lower bound the probability of the event.

An observation is that for any j ̸= i:∑
v

pvj ĝ
(u,v)
j (t) = Au

j (t) · exp
(
−
∫ t

0

Au
i (y) dy

)
.

Hence, the probability of u is unmatched before t is:

∏
j ̸=i

Pr[j doesn’t propose u before t] =
∏
j ̸=i

1−
∑
j

pvi

∫ t

0

ĝ
(u,v)
i (y) dy


=
∏
j ̸=i

exp

(
−
∫ t

0

Au
j (y) dy

)
.

The probability of u is unmatched before t and u′ is unmatched before t1 is:∏
j ̸=i

Pr[j doesn’t propose u′ before t1 and u′ before t]

=
∏
j ̸=i

(
1−

∑
v

pvi

∫ t

0

ĝ
(u,v)
i (y) dy −

∑
v

pvi

∫ t1

0

g
(u′,v)
i (y) dy

)

≤
∏
j ̸=i

(
1−

∑
v

pvi

∫ t

0

ĝ
(u,v)
i (y) dy

)(
1−

∑
v

pvi

∫ t1

0

g
(u′,v)
i (y) dy

)

=
∏
j ̸=i

exp

(
−
∫ t

0

Au
i (y) dy

)
·
∏
j ̸=i

exp

(
−
∫ t1

0

Au′

j (y) dy

)
.

The probability of u is unmatched before t and u′ is matched before t1 is at least the difference of above two
terms, as we desired.

We first study the probability of matching (u, vi = v) in the first two stages of our algorithm, i.e., before time
β1.

Lemma 3.6. The probability of (u, vi = v) being matched before time β1 equals:

(3.6) (2x
(u,v)
i − pvi )

+ · c1(hu) + x
(u,v)
i · c2(hu)
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Proof. The probability of edge (u, vi = v) being matched in time [0, β1) is that

pvi ·
∫ β1

0

g
(u,v)
i (t) ·Pr [u ∈ N(t) | ti = t] dt = pvi ·

∫ β1

0

g
(u,v)
i (t) · exp

(
−
∫ t

0

Au
-i(y) dy

)
dt

= pvi ·
∫ β1

0

a
(u,v)
i (t) · exp

(
−
∫ t

0

Au(y) dy

)
dt = (2x

(u,v)
i − pvi )

+ · c1(hu) + x
(u,v)
i · c2(hu) .

Here, the first equality is by Lemma 3.5; the second and third equalities come from the construction of a(u,v)i (t)
and c1(hu), c2(hu).

Next, we study the probability of matching (u, vi = v) in the third stage of our algorithm, i.e., after time β1.
Lemma 3.7. The probability of (u, vi = v) being matched between time [β1, 1] is at least:(

x
(u,v)
i + (x

(u,v)
i − (2x

(u,v)
i − pvi )

+) ·
(
1− e−(β1−β0)

))
· c3(hu) .

Proof. The probability of the edge being matched in the third stage [β1, 1] equals the following:

(3.7) E

[∫ 1

β1

pvi · g
(u,v)
i (t) · 1

[
u ∈ N(t)

]
dt

]
= pvi ·E

[∫ 1

β1

a
(u,v)
i (β1) · 1

[
u ∈ N(t)

]
· exp

(
−
∫ t

0

Au
i (y) dy

)
dt

]
= pvi ·

∫ 1

β1

E
[
a
(u,v)
i (β1) · 1

[
u ∈ N(t)

]]
· exp

(
−
∫ t

0

Au
i (y) dy

)
dt ,

where the expectations are taken over both the randomness from the instance (i.e., the realization of the values
and the arrival times except for vertex vi) and the randomness from our algorithm; the second equation follows
from the fact that Au

i (y) are prefixed constants.
Further, we have that

E
[
a
(u,v)
i (β1) · 1

[
u ∈ N(t)

]]
= E

[
ρ
(u,v)
i · 1

[
u ∈ N(t)

]]
+
∑
u′ ̸=u

E

[
µv
i (u

′ → u) ·

(
1− exp

(
−
∫ β1

0

Au′

i (y) dy

))
· 1
[
u ∈ N(t)

]]

+
∑
u′≠u

E

[
µv
i (u

′ → u) · exp

(
−
∫ β1

0

Au′

i (y) dy

)
· 1
[
u ∈ N(t), u′ ∈ M(β1)

]]

≥ exp

(
−
∫ t

0

Au
-i(y) dy

)
·

ρ
(u,v)
i +

∑
u′ ̸=u

µv
i (u

′ → u) ·

(
1− exp

(
−
∫ β1

0

Au′
(y) dy

))
≥ exp

(
−
∫ t

0

Au
-i(y) dy

)
·

ρ
(u,v)
i +

∑
u′ ̸=u

µv
i (u

′ → u) ·
(
1− e−(β1−β0)

)
= exp

(
−
∫ t

0

Au
-i(y) dy

)
·
(
ρ
(u,v)
i +

(
ρ
(u,v)
i − (2ρ

(u,v)
i − 1)+

)
·
(
1− e−(β1−β0)

))
,

where the first inequality follows from Lemma 3.5; the second inequality follows from the fact that
exp

(
−
∫ β1

0
Au′

(y) dy
)
≤ exp

(
−
∫ β1

β0
1 dy

)
= e−(β1−β0). Finally, we have that

(3.7) ≥ pvi ·
(
ρ
(u,v)
i + (ρ

(u,v)
i − (2ρ

(u,v)
i − 1)+) ·

(
1− e−(β1−β0)

))
·
∫ 1

β1

exp

(
−
∫ t

0

Au(y)

)
dy

=
(
x
(u,v)
i + (x

(u,v)
i − (2x

(u,v)
i − pvi )

+) ·
(
1− e−(β1−β0)

))
· c3(hu) .
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Putting the two lemmas together, we have that

Pr [(u, vi = v) is matched] ≥ (2x
(u,v)
i − pvi )

+ · c1(hu) + x
(u,v)
i · c2(hu)

+
(
x
(u,v)
i + (x

(u,v)
i − (2x

(u,v)
i − pvi )

+) ·
(
1− e−(β1−β0)

))
· c3(hu)

≥ min
(
c1(hu) + c2(hu) + c3(hu), c2(hu) +

(
2− e−(β1−β0)

)
· c3(hu)

)
· x(u,v)

i ,

where the last inequality holds by the fact that x
(u,v)
i ≥ (2x

(u,v)
i − pvi )

+.

3.5 Constant Activation Rate Except One Large Vertex The multistage activation-based matching
algorithm achieves an improved competitive ratio over 1− 1/e on instances with small xu’s, we are left to design
an algorithm working against large xu’s, which is relatively the easier task. We adapt the constant activation
rate algorithm for the prophet secretary problem to each offline vertex u, and at the same time apply a special
treatment to the most important online neighbor of u. Our algorithm is as the following.

Constant Activation Rate Except One Large Vertex

Parameters: for every x ∈ [0, 1], let α(x) be the unique solution to the following equation:∫ 1

α(x)

e−t(1−x) dt =

∫ 1

0

e−t(1−x) ·
(
1− (t− α(x))+ · x

)
dt .

(1) For every u ∈ U , let iu
def
== argmaxi x

u
i be the most important online vertex of u.

(2) For time t from 0 to 1:

(a) If vertex vi arrives with type v ∼ Fi:
propose to a random offline vertex u ∈ U with probability ρ

(u,v)
i .

(b) If vertex u receives an proposal from vertex vi = v:
• if i = iu, activate the edge iff t ≥ α(xu);
• if i ̸= iu, activate the edge with probability e−t·xu

i .
Accept the first active edge that u receives.

Theorem 3.4. For every u ∈ U, v ∈ V, i ∈ [n], the Constant Activation Rate Except One Large Vertex algorithm
matches edge (u, vi = v) with probability ΓCAR(x

u) · x(u,v)
i , where

ΓCAR(x)
def
==

∫ 1

α(x)

e−t(1−x) dt

By straightforward calculation, ΓCAR(0) = 1 − 1/e and ΓCAR(1) =
√
3 − 1. As an implication, this algorithm

achieves a competitive ratio better than 1− 1/e if every xu is bounded away from 0.

3.5.1 Proof of Theorem 3.4 Fix an arbitrary u ∈ U . According to the definition of our algorithm, the
probability that the edge (u, vj) is not active before time t:

1−
∫ t

0

∑
v

(
pvj · ρ

(u,v)
j · e−yxu

j

)
dy = 1−

∫ t

0

xu
j · e−yxu

j dy = e−txu
j , ∀j ̸= iu ;(3.8)

1−
∫ t

0

1
[
y ≥ α(xu)

]
·
∑
v

pvj · ρ
(u,v)
j dy = 1− (t− α(xu))+ · xu , j = iu ;(3.9)

Next, we consider probability that edge (u, vi = v) being matched.
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Case 1. (i = iu) The edge (u, vi = v) is matched with probability:∫ 1

α(xu)

pvi · ρ(u,v)i · Pr [u ∈ N(t) | ti = t] dt = x
(u,v)
i ·

∫ 1

α(xu)

∏
j ̸=i

e−txu
j dt ≥ x

(u,v)
i ·

∫ 1

α(xu)

e−t(1−xu) dt ,

where the equality is by (3.8) and the inequality holds by the fact that
∑

j ̸=i x
u
j ≤ 1− xu

i = 1− xu.
Case 2. (i ̸= iu) The edge (u, vi = v) is matched with probability:∫ 1

0

pvi · ρ
(u,v)
i ·Pr [u ∈ N(t) | ti = t] dt = x

(u,v)
i ·

∫ 1

0

∏
j ̸=i,iu

e−txu
j ·
(
1− (t− α(xu))+ · xu

)
dt

≥ x
(u,v)
i ·

∫ 1

0

e−t(1−xu) ·
(
1− (t− α(xu))+ · xu

)
dt = x

(u,v)
i ·

∫ 1

α(xu)

e−t(1−xu) dt

where the first equality is by (3.8) and (3.9), and the last equality is by the definition of α(·).
This concludes the proof of the theorem.
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A Reduction from Query-Commit to Prophet Secretary Matching
First of all, notice that the stochastic model of the underlying graph of query-commit is a special case of the model
of prophet secretary matching. Indeed, the prophet secretary problem only assumes independent realizations of
vertices, while query-commit further assumes independent realizations of edges.

Therefore, we can think of an arbitrary instance for query-commit to be an instance for prophet secretary by
artificially separating the two sides of the vertices to be online and offline. Say V is the set of online vertices and
U is the set of offline vertices. In order to apply an online algorithm APSM of the prophet secretary matching
problem for the instance, we draw a uniform at random arrival time tv for each vertex v ∈ V on our own to
simulate the random arrival of the vertices. Then, the difficulty is that we are not able to see the realization of
v’s type before we query the existence of an edge.

Nevertheless, on the arrival of an online vertex v, we first compute the expected matching probability xu
v

of vertex v to any offline vertex u, according to algorithm APSM in an imaginary run of the prophet secretary
problem. The vector (xu

v )u∈U then must be in the following polytope:∑
u∈S

xu
v ≤ 1−

∏
u∈S

(
1− p(v,u)

)
, ∀S ⊆ U,

xu
v ≥ 0, ∀u ∈ U ,

where the first inequality states that the probability of v being matched to some u ∈ S is no larger than the
probability that at least one of the edges {(v, u)}u∈S exists. We import the following lemma by Gamlath et al.
[22] which characterizes the extreme points of this polytope.

Lemma A.1. (Lemma 5 of [22] rephrased) Every vertex of above polytope corresponds to a permutation of a
subset of the offline vertices u1, u2, . . . , uℓ such that:

xu1
v = p(v,u1)

xu2
v =

(
1− p(v,u1)

)
p(v,u2)

. . .

xuℓ
v = (1− p(v,u1)) . . . (1− p(v,uℓ−1))p(v,uℓ)

xu
v = 0 if u ̸= u1, u2, . . . , uℓ
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Notice that querying the vertices in the order of u1, u2, . . . , uℓ, the vector of the expected probability exactly
equals to the extreme point showed above. Thus, we can match the expected probability (xu

v )u∈U in the query-
commit model through the following: 1) decompose (xu

v )u∈U as a convex combination of the extreme points and
sample from the extreme points, 2) then query the offline vertices in the order with respect to the sampled extreme
point. Through this simulation, our algorithm matches the same performance of APSM . Finally notice that the
benchmark (expected offline optimum matching) for the two problems are also the same.

B Proof of Lemma 2.9
We study the following optimization problem and define hs(x) to be the optimal value:

max
{xv

i },{pv
i }

:
1

s− 1
·
∑
i,v

(sxv
i − pvi )

+

subject to :
∑
i

∑
v∈Vi

xv
i ≤ 1−

∏
i

(
1−

∑
v∈Vi

pvi

)
∀Vi ⊆ V

∑
v

xv
i ≤ x ∀i ∈ [n]

First, we reduce the dimension of the optimization by showing that it is without loss of generality to study
when |V | = 1. Specifically, we show that hs(x) equals to the value of the following program:

max
{xi},{pi}

:
1

s− 1
·
∑
i

(sxi − pi)

subject to :
∑
i∈S

xi ≤ 1−
∏
i∈S

(1− pi) ∀S ⊆ [n]

xi ≤ x ∀i ∈ [n]

It is obvious that this program is a special case of the original one. On the other hand, given an arbitrary feasible
solution {xv

i }, {pvi } of the original program. Consider the following vectors:

xi =
∑

v:sxv
i −pv

i ≥0

xv
i and pi =

∑
v:sxv

i −pv
i ≥0

pvi , ∀i ∈ [n]

It is straightforward to verity that the constraints of the new program are satisfied, and the objective value equals
to the objective of the original program.

Next, we fix the vector {xi} and consider the program as an optimization over αi = ln(1−pi). The constraints
can be rewritten as the following:

(B.1)
∑
i∈S

αi ≤ ln

(
1−

∑
i∈S

xi

)
, ∀S ⊆ [n]

And the goal is now to minimize
∑

i 1 − eαi , which is a concave function of {αi}. Thus, it attains its minimum
value at the extreme point of above polytope (B.1).

Let {αi} be an extreme point. Then, there are n tight constraints, corresponding to n sets S1, . . . , Sn. We
claim that the n sets must form a chain

S1 ⊂ S2 ⊂ · · · ⊂ Sn.

Otherwise suppose there are two sets S, T with S ̸⊂ T and T ̸⊂ S while the two corresponding constraints are
tight. Then we have

ln

(
1−

∑
i∈S

xi

)
+ ln

(
1−

∑
i∈T

xi

)
=
∑
i∈S

αi +
∑
i∈T

αi

=
∑

i∈S∩T

αi +
∑

i∈S∪T

αi ≤ ln

(
1−

∑
i∈S∩T

xi

)
+ ln

(
1−

∑
i∈S∪T

xi

)
,
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a contradiction due to the concavity of ln(1 − x). Furthermore, since |Sn| ≤ n, we must have that |Si| = i for
i ∈ [n]. Without loss of generality, we reorder the indices and assume that Si = [i]. According to those tight
constraints, we have

αi = ln

(
1−

∑
j≤i xj

1−
∑

j<i xj

)
and pi =

xi

1−
∑

j<i xj
.

We simplify the program as the following.

max
{xi}

:
1

s− 1
·
∑
i

(
sxi −

xi

1−
∑

j<i xj

)
subject to :

∑
i

xi ≤ 1

xi ≤ x ∀i ∈ [n]

Let {xi} be the optimal solution. We prove that xi’s are non-decreasing by contradiction. Suppose xi > xi+1.
Consider switching the order of them, the objective function strictly improves since

xi

1− y
+

xi+1

1− y − xi
>

xi+1

1− y
+

xi

1− y − xi+1

⇐⇒ xi − xi+1

1− y
≥ (1− y − xi)xi − (1− y − xi+1)xi+1

(1− y − xi)(1− y − xi+1)

⇐⇒ 1

1− y
>

1− y − xi − xi+1

(1− y − xi)(1− y − xi+1)
,

which holds for every xi > xi+1 and y =
∑

j<i xj . Thus, we have x1 ≤ x2... ≤ xn. Finally, we prove that there
is at most one xi in the open interval (0, x) by contradiction. Suppose 0 < xi ≤ xi+1 < x. Consider changing
(xi, xi+1) to (xi − ϵ, xi+1 + ϵ), the objective strictly improves since

∂

∂ϵ

(
xi − ϵ

1− y
+

xi+1 + ϵ

1− y − xi + ϵ

)
< 0

⇐⇒ 1− y − xi − xi+1

(1− y − xi + ϵ)2
<

1

1− y

⇐=
1− y − xi − xi+1

(1− y − xi)2
<

1

1− y
,

which holds for every xi ≤ xi+1 and y =
∑

j<i xj . To sum up, the optimal solution has the form of
0 ≤ x1 < x2 = x3 = ... = xn = x and the objective is

x1 +
1

s− 1
·
n−1∑
k=0

(
sx− x

1− x1 − ix

)
≤ max

t∈[0,x)
t+

1

s− 1

∑
k≥0

(
sx− x

1− t− kx

)+

,

that concludes the proof of the lemma.

B.1 Some properties of hs(x) As promised in Lemma 2.8, we verify that h2(0
+) = 1− ln 2.

Lemma B.1. For any s > 1, limx→0+ hs(x) = 1− ln s
s−1 .

Proof. Notice that hs(x) is a Riemann sum for the integral of function fs(y) =
1

s−1

(
s− 1

1−y

)+
on [0, 1− 1

s ], with
intervals smaller than x. Hence

lim
x→0+

hs(x) =
1

s− 1
·
∫ 1− 1

s

0

(
s− 1

1− y

)
dy = 1− ln s

s− 1
.
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Lemma B.2. For any s > 1 and any x ∈ [0, 1), hs(x) is right continuous.

Actually, hs(x) is also left continuous, but we will conclude a stronger property for the left side in the next lemma.

Proof. For any x ∈ (0, 1), and any x′ > x, suppose that

hs(x
′) = t+

1

s− 1

∑
k∈N,kx′+t≤1−1/s

(
sx′ − x′

1− t− kx′

)
.

Let n ∈ N be that (n− 1)x+ t < 1− 1/s ≤ nx+ t, then n is bounded according to x, n < (1− 1/s)/x+ 1. The
range of the summation can be rewritten as from 0 to n− 1. Then, for any x′ ∈ (t, x), we have

hs(x) ≥ min{t, x}+ 1

s− 1

n−1∑
k=0

(
sx− x

1− t− kx

)
.

Hence,

hs(x
′)− hs(x) ≤ x′ − x+

1

s− 1

n−1∑
k=0

(sx′ − sx)

= (1 +
sn

s− 1
)(x′ − x) < (1 +

1

x
+

s

s− 1
)(x′ − x)

and our lemma follows.

Lemma B.3. For any s > 1 and any x ∈ (0, 1], the left derivative of hs(x) is upper bounded by s+1
2 ,

∂hs(x)

∂x− ≤ s+ 1

2
.

Proof. Suppose that

hs(x) = t+
1

s− 1

∑
k∈N,kx+t≤1−1/s

(
sx− x

1− t− kx

)
.

Let n ∈ N be that (n − 1)x + t < 1 − 1/s ≤ nx + t. The range of the summation can be rewritten as from 0 to
n− 1. Then, for any x′ ∈ (t, x), we have

hs(x
′) ≥ t+

1

s− 1

n−1∑
k=0

(
sx′ − x′

1− t− kx′

)
.

Therefore therefore the left derivative of hs(x) is at most:

1

s− 1

n−1∑
k=0

(
s− 1− t

(1− t− kx)2

)
.

This formula is non-increasing with respect to x. Without loss of generality, we assume nx+t = 1−1/s. Consider
the following equation:

n−1∑
k=0

1− t

(1− t− kx)(1− t− (k + 1)x)
=

1− t

x

n−1∑
k=0

1

1− t− (k + 1)x
− 1

1− t− kx

=
1− t

x
·
(
s− 1

1− t

)
= sn.
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Finally, we have

(s− 1) · ∂hs(x)

∂x− ≤ (1− t) ·
n−1∑
k=0

1

(1− t− kx)(1− t− (k + 1)x)
− 1

(1− t− kx)2

≤ (1− t) ·
n−1∑
k=0

1

2
· 1

(1− t− (k + 1)x)2
− 1

2
· 1

(1− t− kx)2

= (1− t) ·
(
s2

2
− 1

2(1− t)2

)
≤ s2 − 1

2
.

where the second inequality is by AM-GM inequality.

Now, we are able to globally bound the difference of hs(x) and hs(x
′) by their difference x − x′ within a

constant factor, that shall be used in Appendix D.

Lemma B.4. For any s > 1 and any x′ ≤ x ∈ [0, 1] we have hs(x)− hs(x
′) ≤ s+1

2 (x− x′).

Proof. For any x ∈ [0, 1], consider set A = {a : ∀b ∈ [a, x], hs(x) − hs(b) ≤ s+1
2 (x − b), 0 ≤ a ≤ x}. This set is

non-empty since x ∈ A. We denote inf A by a.
First we prove a ∈ inf A. Since a = inf A, we know that hs(x)− hs(b) ≤ s+1

2 (x− b) for any a < b ≤ x. Take
limit b → a+ on both sides gives us hs(x)− hs(a) ≤ s+1

2 (x− a), so a ∈ A.
Next we prove a = 0. Otherwise suppose that a > 0, since the left derivative of a is upper bounded

by s+1
2 , there exist 0 < t < a such that for any b ∈ (t, a), hs(a) − hs(b) ≤ s+1

2 (a − b), which implies that
hs(x)−hs(b) ≤ s+1

2 (x− b). As a result, for any b ∈ (t, a), b ∈ A, contradict to a = inf A. Therefore we must have
a = 0.

Hence, A = [0, x] and our lemma follows.
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C Algorithm with general s

Step Activation Rates Except One Large Item

(1) Let i0 = argmaxi
∑

v x
v
i be the largest item, and let:

x0 =
∑
v

xv
i0 , zvi0 =

(sρvi0 − 1)+

s− 1
, h0 =

∑
v

pvi0z
v
i0 .

(2) For calculate a set of zvi ’s for the remaining items i ̸= i0 such that:

hot
def
==

∑
i ̸=i0

∑
v

pvi z
v
i = min{hs(x0)− h0, 1− x0} , zvi ∈

[
1

s− 1
(sρvi − 1)+, ρvi

]
,

where hs(x0) is the function as defined in Lemma 2.9.

(3) Select threshold times β0 ≤ β1 ≤ β2 based on the instance.

(4) For time t from 0 to 1:

(a) If the largest item i0 arrives with value v, activate it with probability:

gvi0(t) =


0 if t ∈ [0, β0),

zvi0 if t ∈ [β0, β2),

sρvi0 − (s− 1)zvi0 if t ∈ [β2, 1].

(b) If an item i ̸= i0 arrives with value v, activate it with activation rate:

avi (t) =

{
zvi if t ∈ [0, β1),

sρvi − (s− 1)zvi if t ∈ [β1, 1].

(c) Accept the item if it is the first activated item.

Lemma C.1. There exist zvi ’s satisfying the stated constraints.

Proof. Note that 1
s−1 (sρ

v
i − 1)+ ≤ ρvi , it suffices to show that

∑
i ̸=i0

∑
v

pvi ·
1

s− 1
(sρvi − 1)+ ≤ min{hs(x0)− h0, 1− x0} ≤

∑
i ̸=i0

∑
v

pvi ρ
v
i .

Recall that hs(x0) is an upper bound of
∑

i,v
(sxv

i −pv
i )

+

s−1 (see Appendix B). The first inequality follows by:

∑
i ̸=i0

∑
v

pvi ·
1

s− 1
(sρvi − 1)+ =

∑
i ̸=i0

∑
v

1

s− 1
(sxv

i − pvi )
+

=
∑
i

∑
v

1

s− 1
(sxv

i − pvi )
+ − h0 ≤ hs(x0)− h0 .

The second inequality follows by
∑

i ̸=i0

∑
v p

v
i ρ

v
i =

∑
i ̸=i0

∑
v x

v
i = 1− x0.

Lemma C.2. The activation rates and probabilities are well-defined.

Proof. Recall that 0 ≤ xv
i ≤ ρvi ≤ 1. For any item i, we have 0 ≤ zvi ≤ ρvi ≤ 1, and sρvi0 − (s − 1)zvi0 =

sρvi0 − (sρvi0 − 1)+ = min{sρvi0 , 1} ∈ [0, 1]
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Hence, for the largest item i0, the activation probability gvi0(t) is always between 0 and 1. For any
other item i ̸= i0, the activation rate avi (t) is between 0 and 1 and the resulting activation probability
gvi (t) = avi (t)e

−
∫ t
0
Ai(x) dx is also between 0 and 1.

Then, we are ready to prove the main theorem of this section Theorem 2.1, which says that the Step Activation
Rates Except One Large Item is 0.688-competitive.

Proof. [Proof of Theorem 2.1] Actually, we do not give the explicit form of β0, β1, β2. We only show that there
always exists proper choices of them based on any x0, h0 such that the competitive ratio is 0.688. In the following,
we let β0 ≤ β1 ≤ β2 to be determined.

Largest Item. By Lemma 2.3, the probability that the item i( ̸= i0) was not activated before time t is
e−

∫ t
0
Ai(x) dx, where Ai(x) equals

∑
v p

v
i z

v
i when x ∈ [0, β1] and equals s

∑
v x

v
i −

∑
v p

v
i z

v
i otherwise.

By the definition of hot and
∑

j

∑
v x

v
j = 1 (Lemma 2.5), we have:

∑
j ̸=i0

Aj(x) =

{∑
j ̸=i0

∑
v p

v
j z

v
j = hot, for x ∈ [0, β1]∑

j ̸=i0
(s
∑

v x
v
j −

∑
v p

v
j z

v
j ) = s(1− x0)− hot. for x ∈ [β1, 1]

Thus, the probability of not existing any item j ̸= i0 was activated before time threshold t is:∏
j ̸=i0

e−
∫ t
0
Aj(x) dx = e−

∫ t
0

∑
j ̸=i0

Aj(x) dx = e−hot·t−s(1−x0−hot)·(t−β1)
+ def
== e−K(t),

Then, according to Lemma 2.2, the probability of item i0 is accepted with value vi0 = v is:∫ 1

0

pvi0g
v
i0(t)e

−K(t) dt

= pvi0

(
zvi0

∫ 1

β0

e−K(t) dt+ (ρvi0 − zvi0) · s
∫ 1

β2

e−K(t) dt

)
≥ pvi0ρ

v
i0 ·min

(∫ 1

β0

e−K(t) dt, s

∫ 1

β2

e−K(t) dt

)
Other Items. We define L(t) as the probability that item i0 is activated before time t. Then, according to

the definition of gvi0(t) and h0,
∑

v p
v
i0
gvi0(t) equals 0 for t ∈ [0, β0], equals h0 for t ∈ [β0, β2], and equals sx0 − h0

for t ∈ [β2, 1]. Thus, by Lemma 2.1, we have

L(t) =

∫ t

0

∑
v

pvi0g
v
i0(x) dx = h0 · (t− β0)

+ + s(x0 − h0) · (t− β2)
+.

Thus, for any item i ̸= i0, according to Lemma 2.2, the probability of item i to be accepted with value v is:∫ 1

0

pvi a
v
i (t)e

−
∫ t
0

∑
i Ai(x) dx · (1− L(t))

∏
j ̸=i,i0

e−
∫ t
0
Aj(y) dy dt

= pvi

∫ 1

0

avi (t)
∏
j ̸=i0

e−
∫ t
0
Aj(y) dy(1− L(t)) dt

= pvi

∫ 1

0

avi (t)e
−K(t)(1− L(t)) dt

= pvi

(
zvi ·

∫ 1

0

e−K(t)(1− L(t)) dt+ (ρvi − zvi ) · s
∫ 1

β1

e−K(t)(1− L(t)) dt

)
≥ pvi ρ

v
i min

(∫ 1

0

e−K(t)(1− L(t)) dt, s

∫ 1

β1

e−K(t) (1− L(t)) dt

)
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Choice of Parameters. Therefore, we define:

Γ(x0, h0, s, β0, β1, β2) = min

(∫ 1

β0

e−K(t) dt, s

∫ 1

β2

e−K(t) dt,(C.2)

∫ 1

0

e−K(t) (1− L(t)) dt, s

∫ 1

β1

e−K(t) (1− L(t)) dt

)
,(C.3)

We use computer to numerically verify the following, that we discuss in detail in Appendix D.

Lemma C.3. For every x0 ∈ [0, 1] and h0 ∈ [0, x0], there exists s ≥ 1, 0 ≤ β0 ≤ β1 ≤ β2 ≤ 1, such that
Γ(x0, h0, s, β0, β1, β2) > 0.688.

This concludes a competitive ratio of 0.688.

D Proof of Lemma 2.12 and Lemma C.3 with Computer Assistance
Below we prove Lemma C.3. Lemma 2.12 can be proved in a similar way except that the function Γ has one less
input s which is fixed to be 2.

First, we set the parameter s as the following:

s =


3 x0 ∈ [0, 0.35]

2.5 x0 ∈ (0.35, 0.6]

2 x0 ∈ (0.6, 1]

Next, let ϵ = 1/10000. For every x0 ∈ [0, 1], and h0 ∈ [0, x0], we round them down to multiples of ϵ. I.e., let
x′
0 = ϵ · ⌊x0/ϵ⌋ and h′

0 = ϵ · ⌊h0/ϵ⌋.
Next, we prove that for any 0 ≤ β0 ≤ β1 ≤ β2 ≤ 1, we have:

(D.4) Γ(x0, h0, s, β0, β1, β2) ≥ Γ(x′
0, h

′
0, s, β0, β1, β2)−

(
3

2
s2 +

1

2
s

)
ϵ.

We naturally consider variables according to the rounding: h′
ot = min{1 − x′

0, hs(x
′
0) − h′

0} and K(t)′ =
hot

′ · t+ s(1− x′
0 − h′

ot)(t− β1)
+, and L(t)′ = h′

0 · (t− β0)
+ + s(x′

0 − h′
0)(t− β2)

+.
We first bound K(t)′ −K(t) for any t:

K(t)′ −K(t) = s(t− β1)
+ · (x0 − x′

0) +
(
s(t− β1)

+ − t
)
· (hot − h′

ot)

≥
(
s(t− β1)

+ − t
)
· (hot − h′

ot) ≥ −s+ 1

2
ϵ ,

where the last inequality holds by the following case analysis.

• If s(t− β1)
+ − t ≥ 0, then s(t− β1)

+ − t ≤ s− 1. Further by hot ≥ h′
ot − ϵ due to 1− x0 ≥ 1− x′

0 − ϵ and
hs(x0)− h0 ≥ hs(x

′
0)− h′

0 − ϵ, we have K(t)′ −K(t) ≥ −(s− 1)ϵ ≥ − s+1
2 · ϵ.

• If s(t − β1)
+ − t ≤ 0, then t − s(t − β1)

+ ≤ 1. Further by hot′ ≥ h′
ot − s+1

2 ϵ due to 1 − x′
0 ≥ 1 − x0 and

hs(x
′
0)− h′

0 ≥ hs(x
′
0)− h0 ≥ hs(x0)− h0 − s+1

2 ϵ by Lemma B.4, we have K(t)′ −K(t) ≥ − s+1
2 ϵ.

Second we lower bound L(t)′ − L(t) for any t:

L(t)′ − L(t) = −s(t− β0)
+ · (x0 − x′

0) + ((t− β0)
+ + s(t− β2)

+) · (h0 − h′
0) ≥ −s · ϵ.

Putting these together, we have for any t:

e−K(t) − e−K′(t) ≥ −s+ 1

2
· ϵ,

e−K(t)(1− L(t))− e−K(t)′(1− L(t)′) ≥ −
(
s+ 1

2
+ s

)
· ϵ.
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Recall the definition of Γ function, we conclude the proof of (D.4).
Finally, we are left to verify that for every (x0, h0) = (iϵ, jϵ), 0 ≤ i, j ≤ 1

ϵ , there exist 0 ≤ β0 ≤ β1 ≤ β2 ≤ 1,

Γ(x0, h0, s, β0, β1, β2)− s

(
3

2
s+

1

2

)
· ϵ > 0.688 .

This final step is done by brute force search with computer assistance. For verification, the source code can be
found at a github repository2.

2https://github.com/billyldc/prophet_secretary_and_matching_code
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