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This paper introduces the optimal mixing problem, a natural extension of the computation of 
approximate Nash Equilibria (NE) in bimatrix games. The problem focuses on determining the 
optimal convex combination of given strategies that minimizes the approximation (i.e., regret) 
in NE computation. We develop algorithms for the exact and approximate optimal mixing prob-

lems and present new complexity results that bridge both practical and theoretical aspects of NE 
computation. Practically, our algorithms can be used to enhance and integrate arbitrary existing 
constant-approximate NE algorithms, offering a powerful tool for the design of approximate NE 
algorithms. Theoretically, these algorithms allow us to explore the implications of support restric-

tions on approximate NE and derive the upper-bound separations between approximate NE and 
exact NE. Consequently, this work contributes to theoretical understandings of the computational 
complexity of approximate NE under various constraints and practical improvements in multi-

agent reinforcement learning (MARL) and other fields where NE computation is involved.

1. Introduction

The problem of approximate Nash equilibrium (NE) computation is interesting and fundamental from both theoretical and pragmatic 
perspectives. Theoretically, approximate NE builds bridges between several important complexity classes related to TFNP [1], espe-

cially PPAD [2,3]. Practically, an approximate NE solver is a core component in multi-agent reinforcement learning (MARL) [4–7], 
which has been successfully applied to train machine agents that can defeat the top human players in electronic games [8,9].

To define the approximate NE problem, consider a two-player bimatrix game with payoff matrices 𝑅 ∈ [0,1]𝑚×𝑛 and 𝐶 ∈ [0,1]𝑚×𝑛. 
For any strategies 𝑥, 𝑦 of both players, respectively, we define

𝑓 (𝑥, 𝑦) = max{𝑓𝑅(𝑥, 𝑦), 𝑓𝐶 (𝑥, 𝑦)} ≥ 0

with 𝑓𝑅(𝑥, 𝑦) = max{𝑅𝑦} − 𝑥𝖳𝑅𝑦 and 𝑓𝐶 (𝑥, 𝑦) = max{𝐶𝑇 𝑥} − 𝑥T𝐶𝑦. Intuitively, in the game given by payoff matrices 𝑅,𝐶 where 
the two players select 𝑥, 𝑦 respectively, 𝑓 (𝑥, 𝑦) is a measure of their willingness to unilaterally deviate from the current strategy. 
Following [10,11], the goal of NE computation in bimatrix games can be written as:
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argmin
𝑥,𝑦 

𝑓 (𝑥, 𝑦) s.t. 𝑥 ∈Δ𝑚, 𝑦 ∈Δ𝑛. (1)

In the literature [12], 𝑓 (𝑥, 𝑦) is called the approximation of (𝑥, 𝑦). A strategy profile (𝑥, 𝑦) is an NE if 𝑓 (𝑥, 𝑦) = 0 and an 𝜖-NE if 
𝑓 (𝑥, 𝑦) ≤ 𝜖. Since 𝑓 ≥ 0 and NE always exists [13], the solution of (1) must be an NE.

1.1. The optimal mixing problem

We propose the optimal mixing problem of approximate NE, which is a natural extension of the approximate NE computation. Given 
𝑠, 𝑡 strategies 𝑥1,… , 𝑥𝑠 and 𝑦1,… , 𝑦𝑡 of the two players, the (𝑠, 𝑡)-optimal mixing problem is:

argmin
𝛼,𝛽

𝑓 (𝛼1𝑥1 +⋯+ 𝛼𝑠𝑥𝑠, 𝛽1𝑦1 +⋯+ 𝛽𝑡𝑦𝑡) s.t. 𝛼 ∈Δ𝑠, 𝛽 ∈Δ𝑡. (2)

Intuitively, the problem seeks the convex combination of 𝑥1,… , 𝑥𝑠 and 𝑦1,… , 𝑦𝑡 that has the minimum approximation. We also 
define the 𝜖-optimal (𝑠, 𝑡)-mixing problem by allowing an additive tolerance of 𝜖 in the objective, i.e., the output is required to have 
approximation no more than 𝑓 ∗ + 𝜖, where 𝑓 ∗ is the optimal value of (2).

The approximate and exact optimal mixing problem is a nature extension of the NE computation: when the input of the approximate 
and exact optimal mixing problem is 𝑒1,… , 𝑒𝑚 and 𝑒1,… , 𝑒𝑛, the standard basis of ℝ𝑚 and ℝ𝑛, it is exactly the NE computation problem 
(1).

The motivation of the optimal mixing problem is twofold.

• Algorithm design and analysis.

To guarantee a certain approximation bound, current polynomial-time algorithms for approximate NE all follow a search-and-

mix method [12]. It can be divided into two polynomial-time phases. In the search phase, an algorithm computes a fixed number 
of strategies of each player. In the mixing phase, the algorithm then makes specific convex combinations of the selected strategies 
and outputs the one with the minimum 𝑓 value. However, such a design paradigm has several limitations:

– Different approaches seldom integrate. The search phases of these algorithms follow very different and even incom-

parable approaches, e.g., gradient descent [10,11], linear programming [14], and zero-sum game [15,16]. However, it is 
worth considering whether an algorithm with better approximation bounds can be designed by combining these differ-

ent approaches. The optimal mixing problem, which allows to mix any strategies, offers a unified framework for such a 
combination.

– Overemphasis on worst cases. To guarantee an approximation bound, all mixing phase design in the literature only 
focuses on the worst-case instances [12], which are rare compared to other instances [17,18,12,19]. However, such focuses 
may hinder the practical usefulness of these algorithms. It is natural to directly find the optimal convex combination for 
every instance, which is essentially an optimal mixing problem.

• Computational complexity of approximate NE under support restrictions. It has been shown in [20,21] that adding certain 
natural requirements increases the complexity of computing a Nash Equilibrium (NE) from PPAD-complete [2] to NP-complete. 
However, this conclusion does not necessarily hold when considering approximate Nash Equilibria, which is a more computation-

ally appropriate notion that accounts for bounded rationality.1 For example, deciding the existence of an exact NE with a specific 
support is NP-complete [20]. In contrast, by slightly adjusting the probabilities in the strategy profile, we can demonstrate that 
for any support, there always exists an 𝜖-NE on it.

From above observations, we know that the complexity of approximate NE computation could be very different from that of 
exact NE computation if we put certain restrictions on the solution. The optimal mixing problem provides a unified framework 
to reexamine the effect of such restriction over approximate NE, especially the support restriction.

1.2. Our contributions

Bearing these motivations, we develop algorithms for the approximate and exact optimal mixing problems. Informally, we have 
that:

Theorem 1.1 (Main results). When 𝑠 ≤ 2, 𝑡 ≤ 3 or 𝑠 = 1, 𝑡 = poly(𝑛), there exists an algorithm solving any optimal mixing problem in 

poly(𝑚,𝑛) time. Moreover, there exists an algorithm solving any 𝜖-optimal (𝑠, 𝑡)-mixing problem in time poly(𝑚,𝑛, 𝑠, 𝑡)
(
𝑒+ 𝑒 √

𝜖∕2

)𝑠+𝑡
and 

space poly(𝑚,𝑛, 𝑠, 𝑡).

This theorem provides various implications, as is described below.

1 According to [22], approximate NE is a more realistic solution concept as it involves bounded rationality.
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Table 1
This table shows the results of 𝜖-optimal (𝑠, 𝑡)-mixing problem with distinct pure-

strategy input. Without loss of generality, we assume 𝑚 = 𝑛 and 𝑠≤ 𝑡. The results are 
presented in “lower bound; upper bound” pairs if the two bounds are not matched. 
Our new results are in boldface.

𝜖
𝑠, 𝑡 Θ(𝑛) ≤ 𝑛 𝑛

> 1∕3 ?; 𝟐𝑶(𝒏) poly(𝑛) [10] 
∈ [𝜖∗ ,1∕3] ?; 𝟐𝑶(𝒏) ?; 𝑛𝑂(log𝑛∕𝜖2) [22] 
< 𝜖∗ , const quasi-poly(𝑛)2 [25]; 𝟐𝑶(𝒏) quasi-poly(𝑛)2 [25]; 𝑛𝑂(log𝑛∕𝜖2) [22] 
= 1∕𝑛𝑂(1) PPAD-hard [2]; 𝟐𝑶(𝒏 𝐥𝐨𝐠𝒏) PPAD-complete [2]; 2𝑂(𝑛) [26] 
= 1∕2𝑂(𝑛) PPAD-hard [2]; 𝟐𝑶(𝒏𝟐) PPAD-complete [2]; 2𝑂(𝑛) [26] 
= 0 (exact) FNP-hard [20,21]; ? PPAD-complete [2]; 2𝑂(𝑛) [26] 

• Algorithm design and analysis:

– Integration of different approaches: Our algorithms can be used to combine arbitrary strategies computed by different 
approaches. Thus, the combined strategy fuses advantages from these different approaches.

– Instance-optimal mixing phases: With these algorithms, we propose general approximate and exact polynomial-time al-

gorithms for instance-optimal mixing phases. There is no need to design the mixing phase ad hoc in the future. Interestingly, 
[23] shows that there is an automatic way to derive the approximation bound for any search-and-mix algorithm, even when 
using our algorithms as the mixing phase. Thus, together with our algorithms, the mixing phase design is fully automated.2

• Computational complexity of approximate NE under support restrictions:

– Restrictions enlarge the complexity: As is shown in Table 1, our algorithms establish upper bounds for finding the 
best approximate NE over certain support. Table 1 shows the upper bound complexity of approximate NE with support 
restrictions (the left column, where the support of their approximate NE must be over certain pure strategies) is significantly 
larger than that of approximate NE without support restrictions (the right column). This is consistent with the cases in exact 
NE computation [20,21].

– Approximate NE with restrictions could be more difficult than exact NE: The upper bound results reveal a counter-

intuitive separation between the complexities of approximate and exact Nash Equilibria (NE). Specifically, the complexity of 
deciding the existence of a 1∕𝑛𝑂(1)-approximate NE under support restrictions is 2𝑂(𝑛 log𝑛). Surprisingly, this is even higher 
than the complexity for finding an exact NE under the same support restrictions, which is 2𝑂(𝑛) by support enumeration [24]. 
While it is commonly believed that approximate NE are easier to compute than exact NE, this intuition does not always 
hold when there is no guarantee of existence due to support restrictions. In such cases, demonstrating the non-existence of 
a 1∕𝑛𝑂(1)-approximate NE can be more challenging than showing the non-existence of an exact NE.

Remark 1.1. One may note that in Theorem 1.1, we stop at (2,3) for exact optimal mixing problem. We discuss the reason in Section 6.

1.3. Related work

Complexity and Approximation of NE.

The computational complexity of approximate NE has been extensively studied. Initially, Papadimitriou [27] introduces a general 
complexity class PPAD and shows that computing 1∕2𝑛-NE lies in PPAD. Later, computing 1∕poly(𝑛)-NE is shown to be PPAD-

complete for 𝑘-player games with any fixed 𝑘 ≥ 2 [2,3]. Moreover, computing NE in two-player games is hard even in the smoothed 
meaning [2], or restricting the rank of game to constant [28]. These results establish the hardness of approximate NE computing 
with polynomial-small approximation. It is well-believed that computing NE could require exponential time (ETH for PPAD). See, 
e.g. [29,25].

For constant approximation, it seems to be easier than polynomial-small approximation. For any given 𝜖 > 0, there is an algorithm 
finding an 𝜖-NE [22] in 𝑛𝑂(log𝑛∕𝜖2) time (QPTAS). Assuming ETH for PPAD, Rubinstein [25] shows that there exists a constant 𝜖∗ > 0
such that computing an 𝜖∗-NE in a two-player 𝑛 × 𝑛 game requires 𝑛log1−𝑜(1) 𝑛 time. This matches the QPTAS result [22] up to 𝑜(1)
term.

The lower bound results on constant approximation lead to the study of the upper bound, i.e., seeking the minimum 𝜖 such that 
there exists a polynomial-time algorithm computing an 𝜖-NE. Most literature focuses on two-player (bimatrix) games in the literature. 
A series of polynomial-time algorithm [15,2,14,30,10,31,11] have been proposed, with the approximation from the beginning of 3∕4
[31] to the state-of-the-art 1∕3 + 𝛿 [10]. For a more thorough introduction, see [12].

2 A perhaps surprising result given by [23] is that for each algorithm in the literature, the approximation bound with our algorithms as the mixing phase is the 
same as original ad hoc ones!
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Notably, all the results above, including algorithms and hardness results, heavily rely on the existence of NE. In fact, if we want 
to find NE with certain natural requirements, such as strong NE, NE over a certain support, or with certain social welfare, such NE 
may not exist. Moreover, by using Sat to make reductions, [20,21] show that deciding the existence of such NE is NP-compete. The 
FNP-hardness result in Table 1 is a direct corollary of this reduction. However, to the best of our knowledge, there is no literature at 
all for similar discussions over approximate NE.

NE Computation in Practical Applications.

Emerging from game theory, NE computation has been widely applied in many fields, including Internet economics, computer 
science, and machine learning. Most prominently, NE computing is a core component in many multi-agent reinforcement learning 
(MARL) algorithms, including PSRO [7], Nash-Q [4], Nash-VI [6], and Nash-V learning [5]. MARL has been successfully applied to 
train machine agents that can defeat the top human players in electronic games, including AlphaStar [9] in StarCraft II and OpenAI 
Five [8] in Dota 2. With such fruitful applications, it is demanding to design efficient algorithms for NE.

1.4. Paper organization

This paper is organized as follows. In Section 2, we introduce the basic concepts and notations. In Section 3, we present the 
polynomial-time algorithms for the optimal mixing problem. In Section 4, we present an algorithm for the approximate optimal 
mixing problem. In Section 5, we show how to apply the optimal mixing problem to make an instance-optimal enhancement to the 
search-and-mix method in the literature. In Section 6, we conclude the paper, discuss the limitations of our work, and propose future 
directions.

2. Preliminaries

Asymptotic Notations.

We use the standard asymptotic notations 𝑂(⋅) and Θ(⋅) to describe the asymptotic behavior of functions. For two positive functions 
𝑓 and 𝑔, 𝑓 = 𝑂(𝑔) means that there exists a constant 𝑐 > 0 such that 𝑓 (𝑛) ≤ 𝑐 ⋅ 𝑔(𝑛) for all sufficiently large 𝑛. 𝑓 = Θ(𝑔) means that 
𝑓 =𝑂(𝑔) and 𝑔 =𝑂(𝑓 ).
Vectors and Matrices.

Denote the 𝑛-dimensional Euclidean space by ℝ𝑛. The standard orthonormal basis of ℝ𝑛 is 𝑒1,… , 𝑒𝑛. Notation [𝑛] ∶= {1,… , 𝑛}
represents an index set. For vector 𝑣 ∈ ℝ𝑛, denote its 𝑖th item by 𝑣𝑖. For vector 𝑢 ∈ ℝ𝑛, define the following operators: max{𝑢} ∶=
max{𝑢1,… , 𝑢𝑛}, min{𝑢} ∶= min{𝑢1,… , 𝑢𝑛}. For two vectors 𝑣,𝑤∈ℝ𝑛, notation 𝑣 ≥𝑤 represents that 𝑣𝑖 ≥𝑤𝑖 holds for every 𝑖∈ [𝑛].

For an 𝑚 × 𝑛 matrix 𝐴, denote its 𝑖th row by 𝐴𝑖, its 𝑗th column by 𝐴𝑗 , and its item at 𝑖th row 𝑗th column by 𝐴𝑖𝑗 . Its transpose is 
denoted by 𝐴𝖳.

Simplex and Convex Combinations.

A standard (𝑛 − 1)-simplex is the set Δ𝑛 ∶= {𝛼 ∈ ℝ𝑛 ∶ 𝛼 ≥ 0 and 
∑𝑛
𝑖=1 𝛼𝑖 = 1}. A simplex can be viewed as a probability space 

and its elements are probability vectors. For given elements 𝑧1,… , 𝑧𝑤 from ℝ𝑛, the set of their convex combinations is defined to be 
{𝛼1𝑧1 +⋯+ 𝛼𝑤𝑧𝑤 ∶ 𝛼 ∈Δ𝑤}, where any vector 𝛼 ∈Δ𝑤 determines a convex combination 𝛼1𝑧1 +⋯+ 𝛼𝑤𝑧𝑤.

Games, Mixed Strategies, and Best Responses.

We only focus on bimatrix games, in which there are two players. We refer to them as the row player and the column player. A 
game can be defined by a pair of payoff matrices 𝑅 and 𝐶 in [0,1]𝑚×𝑛. When the row player chooses the 𝑖th row and the column 
player chooses the 𝑗th column, their payoffs are denoted by 𝑅𝑖𝑗 and 𝐶𝑖𝑗 , respectively.

For each player, a (mixed) strategy of the row (column) player is a vector 𝑥 ∈Δ𝑚 (𝑦 ∈Δ𝑛). In particular, pure strategies are specific 
strategies that choose a row or a column with a probability of 1. A strategy profile (𝑥, 𝑦) refers to a pair of mixed strategies 𝑥 and 𝑦
from the row and column players, respectively. Given the strategy profile, the payoffs of the row player and the column player are 
𝑥𝖳𝑅𝑦 and 𝑥𝖳𝐶𝑦, respectively. A best response against a strategy 𝑥 (𝑦) from the row (column) player is a mixed strategy of the column 
(row) player that maximizes the expected payoff against 𝑥 (𝑦).

Approximate Nash Equilibria from the Optimization Viewpoint.

We follow [11] to define 𝜖-NE. First, define the regret of the row player and the column player as follows:

𝑓𝑅(𝑥, 𝑦) ∶= max{𝑅𝑦} − 𝑥𝖳𝑅𝑦 and 𝑓𝐶 (𝑥, 𝑦) ∶= max{𝐶𝖳𝑥} − 𝑥𝖳𝐶𝑦.

Define 𝑓 (𝑥, 𝑦) ∶= max{𝑓𝑅(𝑥, 𝑦), 𝑓𝐶 (𝑥, 𝑦)}. Then a strategy profile (𝑥, 𝑦) is an 𝜖-NE if and only if 𝑓 (𝑥, 𝑦) ≤ 𝜖. 𝑓 (𝑥, 𝑦) is called the 
approximation of (𝑥, 𝑦). Particularly, a strategy profile is an NE if it is a 0-NE. The minimum of 𝑓 over Δ𝑚 × Δ𝑛 is always 0 by the 
existence of NE [13].

3. Polynomial-time algorithms for optimal mixing problems

In this section, we propose polynomial-time algorithms for the optimal mixing problem. In Section 3.1, we summarize the results. 
In Section 3.2, we sketch the main ideas of the algorithms. The detailed algorithms and proofs are given in Section 3.3.

Recall that the optimal mixing problem is defined as follows.
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Definition 3.1 (Optimal (𝑠, 𝑡)-mixing problems). An optimal (𝑠, 𝑡)-mixing problem has the following input and output.

• Input: Bimatrix game (𝑅,𝐶), mixed strategies 𝑥1,… , 𝑥𝑠 of the row player and 𝑦1,… , 𝑦𝑡 of the column player.

• Output: Coefficients 𝛼∗ ∈ Δ𝑠, 𝛽∗ ∈ Δ𝑡 that minimize

𝑓 (𝛼1𝑥1 +⋯+ 𝛼𝑠𝑥𝑠, 𝛽1𝑦1 +⋯+ 𝛽𝑡𝑦𝑡).

For convenience, we name an algorithm as an optimal (𝑠, 𝑡)-mixing algorithm if it solves any optimal (𝑠, 𝑡)-mixing problem.

3.1. Summary of results

A summary of the results in this section is presented in Theorem 3.1.

Theorem 3.1. The following statements hold.

1. For any 𝑡, there exists an optimal (1, 𝑡)-mixing algorithm in 𝑂(𝑚𝑛𝑡+𝐿(𝑡,𝑚)) time, where 𝐿(𝑡,𝑚) is the time complexity of solving a linear 
program with 𝑡 variables and 𝑚 constraints.

2. There exists an optimal (2,2)-mixing algorithm in 𝑂(𝑚𝑛) time.

3. There exists an optimal (2,3)-mixing algorithm in 𝑂(𝑚2(𝑛+ log𝑚) + 𝑛 log𝑛) time.

3.2. Sketch of the ideas

We now sketch the main ideas of the algorithms. We begin by scrutinizing the form of the problem. The objective function in 
Definition 3.1 can be expanded as follows:

max{max{𝑅(𝛽1𝑦1 +⋯+ 𝛽𝑡𝑦𝑡)} − (𝛼1𝑥1 +⋯+ 𝛼𝑠𝑥𝑠)𝖳𝑅(𝛽1𝑦1 +⋯+ 𝛽𝑡𝑦𝑡),

max{𝐶𝖳(𝛼1𝑥1 +⋯+ 𝛼𝑠𝑥𝑠)} − (𝛼1𝑥1 +⋯+ 𝛼𝑠𝑥𝑠)𝖳𝐶(𝛽1𝑦1 +⋯+ 𝛽𝑡𝑦𝑡)}.
(3)

A direct observation is that we can suppose without loss of generality that 𝑠 ≤ 𝑡. Otherwise, we simply exchange the positions of 
the players.

We first consider the simplest situation where 𝑠 = 1. In this case, Δ𝑠 is degenerated to a single point. (3) is degenerated to the 
following form:

max{max{𝑅(𝛽1𝑦1 +⋯+ 𝛽𝑡𝑦𝑡)} − 𝑥𝖳1𝑅(𝛽1𝑦1 +⋯+ 𝛽𝑡𝑦𝑡),

max{𝐶𝖳𝑥1} − 𝑥𝖳1𝐶(𝛽1𝑦1 +⋯+ 𝛽𝑡𝑦𝑡)}.
(4)

This can further be expanded to:

max{𝛽1
(
𝑅𝑦1

)
1 +⋯+ 𝛽𝑡

(
𝑅𝑦𝑡

)
1 − 𝛽1

(
𝑥𝖳1𝑅𝑦1

)
−⋯− 𝛽𝑡

(
𝑥𝖳1𝑅𝑦𝑡

)
,… ,

𝛽1
(
𝑅𝑦1

)
𝑚
+⋯+ 𝛽𝑡

(
𝑅𝑦𝑡

)
𝑚
− 𝛽1

(
𝑥𝖳1𝑅𝑦1

)
−⋯− 𝛽𝑡

(
𝑥𝖳1𝑅𝑦𝑡

)
,(

𝐶𝖳𝑥1
)
− 𝛽1

(
𝑥𝖳1𝐶𝑦1

)
−⋯− 𝛽𝑡

(
𝑥𝖳1𝐶𝑦𝑡

)
}.

(5)

Now, the objective function becomes the maximum of 𝑚 + 1 functions being all linear in 𝛽, respectively. In addition, the constraint 
𝛽 ∈ Δ𝑡 is also linear in 𝛽. Using a standard transformation, we can transform the problem into a linear program with 𝑡 + 1 variables 
and 𝑚 + 𝑡 + 2 constraints. Since the linear program can be solved in polynomial time [32], we obtain a polynomial-time optimal 
(1, 𝑡)-mixing algorithm.

Then, we consider the general optimal (𝑠, 𝑡)-mixing problem. In this case, all terms in (3) are non-degenerated. There are three 
major components in (3): inner maximum terms max{𝑅(𝛽1𝑦1 +⋯ + 𝛽𝑡𝑦𝑡)} and max{𝐶𝖳(𝛼1𝑥1 +⋯ + 𝛼𝑠𝑥𝑠)}, bilinear terms (𝛼1𝑥1 +
⋯+ 𝛼𝑠𝑥𝑠)𝖳𝑅(𝛽1𝑦1 +⋯+ 𝛽𝑡𝑦𝑡) and (𝛼1𝑥1 +⋯+ 𝛼𝑠𝑥𝑠)𝖳𝐶(𝛽1𝑦1 +⋯+ 𝛽𝑡𝑦𝑡), and the outermost maximum operator (i.e., max{𝑓𝑅,𝑓𝐶}). 
Different terms present different difficulties:

1. Inner maximum terms are piecewise-linear in 𝛽 and 𝛼, respectively, thus convex but non-differentiable.

2. Bilinear terms are bilinear in 𝛽 and 𝛼, thus differentiable but nonconvex.

3. The outermost maximum operator is non-differentiable.

Our solution is sketched below:

1. Since the inner maximum terms have a piecewise-linear structure, we can divide the problem into subproblems on each linear 
piece.

• To determine the linear pieces, we resort to the famous half-plane intersection problem in computational geometry.
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• This overcomes the first difficulty.

2. For each subproblem, we derive necessary conditions for the global optima. Thus, by scanning all points satisfying the conditions, 
we can find a global optimum.

• To give the necessary conditions, we combine discrete geometry (linear-algebraic characterizations of polytopes) and opti-

mization (KKT conditions).

• To scan these points, we rewrite the conditions into several optimization problems (e.g., univariate quadratic programs and 
linear programs) and solve them.

• This overcomes the second and the third difficulty.

3. Finally, we show that there are polynomial number of linear pieces and in each linear piece a constant number of points to check. 
Thus, we can find the global optimum in polynomial time.

To demonstrate the main idea of the algorithms, below we sketch the implementation of the optimal (2,2)-mixing algorithm over 
arbitrary strategies 𝑥1, 𝑥2 and 𝑦1, 𝑦2.

Denote the set of all possible convex combinations as  ∶= {(𝛼1𝑥1 + 𝛼2𝑥2, 𝛽1𝑦1 + 𝛽2𝑦2) ∶ 𝛼, 𝛽 ∈Δ2}. Observe that the form of the 
function 𝑓𝑅 over the mixing region  is:

𝑓𝑅(𝛼1𝑥1 + 𝛼2𝑥2, 𝛽1𝑦1 + 𝛽2𝑦2)

=max{𝑅(𝛽1𝑦1 + 𝛽2𝑦2)} − (𝛼1𝑥1 + 𝛼2𝑥2)𝖳𝑅(𝛽1𝑦1 + 𝛽2𝑦2).

Note that 𝛽2 = 1 − 𝛽1, thus the max term can be written as max{𝛽1𝑅(𝑦1 − 𝑦2) +𝑅𝑦2}. It has the form of the maximum of 𝑚 linear 
functions about 𝛽1, which is piecewise linear in 𝛽1.

Now, we want to compute the exact form of the piecewise linear function, given by a sequence of breakpoints 0 = 𝑏1 ≤⋯ ≤ 𝑏𝑡 = 1
(𝑡 ≤𝑚+1) so that 𝑓 is linear in 𝛽 on each [𝑏𝑖, 𝑏𝑖+1]. We need to compute the exact form of this problem, that is to compute the value 
of 𝑅(𝑦1 −𝑦2) and 𝑅𝑦2 with time 𝑂(𝑚𝑛). Then, this becomes a famous problem in computational geometry called the envelope problem, 
which can be solved in time 𝑂(𝑚 log𝑚).

Similarly, we can compute the linear pieces given by breakpoints 0 = 𝑎1 ≤⋯ ≤ 𝑎𝑠 = 1 (𝑠 ≤ 𝑛+ 1) in time 𝑂(𝑛 log𝑛). Therefore, on 
each grid [𝑎𝑖, 𝑎𝑖+1] × [𝑏𝑗 , 𝑏𝑗+1], 𝑖 ∈ [𝑠], 𝑗 ∈ [𝑡], both 𝑓𝑅 and 𝑓𝐶 are linear in 𝛼 and 𝛽, respectively.

Then, we minimize the objective function over each grid and compare the results to take the one with minimal 𝑓 value. By doing 
so, we obtain the global minimum of 𝑓 on region .

On each grid, the objective function is in the form of the maximum of two bilinear functions 𝑔1 and 𝑔2. However, it is still non-

differentiable. We apply the KKT condition from continuous optimization to obtain the necessary optimal conditions for this problem. 
We can show that the minimum must be attained at the following three kinds of points:

1. Points where the partial derivative of 𝑔1 or 𝑔2 with respect to 𝛼 or 𝛽 is zero.

2. The four vertices of the grid.

3. Points where 𝑔1 = 𝑔2.

Now we show that the number of points to be checked of each kind is bounded by a constant. For the first kind, since the partial 
derivatives of bilinear functions 𝑔1 and 𝑔2 are linear, the problem finally reduces to a univariate linear program, which can be solved 
in constant time. For the second kind, there are only four points. Finally, for the third kind, we can solve the relation between 𝛼 and 
𝛽 from 𝑔1 = 𝑔2 and substitute it into the objective function. Then, we obtain a univariate quadratic program, which can be easily 
minimized by checking at most six points.

In words, on each grid, we only need constant time to compute the minimum 𝑓 . Thus, by scanning over all grids in 𝑂(𝑚𝑛) time, 
we can compute the global minimum of 𝑓 on . The total complexity is given by 𝑂(𝑚𝑛+𝑚 log𝑚+ 𝑛 log𝑛) =𝑂(𝑚𝑛).

3.3. Optimal mixing algorithms

In this section, we present the detailed algorithms for the optimal mixing problems. First, we present several auxiliary results to 
address the two basic difficulties mentioned in Section 3. Then, we present the optimal mixing algorithms for the optimal (1, 𝑡)-mixing 
problem, the optimal (2,2)-mixing problem, and the optimal (2,3)-mixing problem.

3.3.1. Linear piece partitioning

In this part, we provide the solution for the first difficulty concerning the non-differentiability of the inner maximum terms by 
linear piece partitioning. The idea is to partition the domain into regions where both 𝑓𝑅 and 𝑓𝐶 are linear in 𝛼 and 𝛽, respectively. 
To make a concise description, for a function 𝐹 ∶𝑋→ℝ, we say a linear piece of 𝐹 is the maximal region Ω ⊆𝑋 such that 𝐹 is linear 
in each variable on Ω.
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Fig. 1. Illustration of linear pieces when 𝑡= 2. The function figure of max{𝑅(𝛽1𝑦1 + 𝛽2𝑦2)} is in green color. Each different color represents a different linear piece. 

Consider function max{𝑅(𝛽1𝑦1 +⋯+ 𝛽𝑡𝑦𝑡)}. We have:

max{𝑅(𝛽1𝑦1 +⋯+ 𝛽𝑡𝑦𝑡)}

=max{𝛽1𝑅𝑦1 +⋯+ 𝛽𝑡𝑅𝑦𝑡}

= max 
1≤𝑖≤𝑚

{𝛽1(𝑅𝑦1)𝑖 +⋯+ 𝛽𝑡(𝑅𝑦𝑡)𝑖}.
(6)

It is the maximum of 𝑚 linear functions in 𝛽. Therefore, we can partition the domain into several linear pieces, as illustrated in Fig. 1.

An important observation is that the linear pieces can be expressed by linear inequalities. When the 𝑖th linear function attains the 
maximum, we have

∀𝑗 ∈ [𝑚], 𝑗 ≠ 𝑖, 𝛽1(𝑅𝑦1)𝑖 +⋯+ 𝛽𝑡(𝑅𝑦𝑡)𝑖 ≥ 𝛽1(𝑅𝑦1)𝑗 +⋯+ 𝛽𝑡(𝑅𝑦𝑡)𝑗 .

Namely,

∀𝑗 ∈ [𝑚], 𝑗 ≠ 𝑖, 𝛽1[(𝑅𝑦1)𝑖 − (𝑅𝑦1)𝑗 ] +⋯+ 𝛽𝑡[(𝑅𝑦𝑡)𝑖 − (𝑅𝑦𝑡)𝑗 ] ≥ 0.

Thus, each linear piece of the max{𝑅𝑦} term can be determined by 𝑚− 1 inequalities, and forming a (possibly empty) polytope (see 
Appendix C for the formal definition). There are 𝑚 such polytopes, denoted by 𝑃𝐶

1 ,… , 𝑃 𝐶
𝑚 , where notation 𝐶 means that they are 

collections of the column player’s strategies.

Similarly, the linear pieces of max{𝐶𝖳𝑥} term can be determined by 𝑛− 1 inequalities. We denote the polytopes by 𝑃𝑅
1 ,… , 𝑃 𝑅

𝑛 .

Our solution is to divide the problem into each polytope 𝑃𝑅
𝑖
× 𝑃𝐶

𝑗
(𝑖, 𝑗 ∈ [𝑛] × [𝑚]), which we call the separated polytope. In this 

way, we can eliminate the inner max term of (3) and obtain the following problem:

min 
𝛼∈(Δ𝑠∩𝑃𝑅𝑖 ),𝛽∈(Δ𝑡∩𝑃𝐶𝑗 )

max{𝛽1(𝑅𝑦1)𝑖 +⋯+ 𝛽𝑡(𝑅𝑦𝑡)𝑖

−(𝛼1𝑥1 +⋯+ 𝛼𝑠𝑥𝑠)𝖳𝑅(𝛽1𝑦1 +⋯+ 𝛽𝑡𝑦𝑡),

𝛼1(𝐶𝖳𝑥1)𝑗 +⋯+ 𝛼𝑠(𝐶𝖳𝑥𝑠)𝑗
−(𝛼1𝑥1 +⋯+ 𝛼𝑠𝑥𝑠)𝖳𝐶(𝛽1𝑦1 +⋯+ 𝛽𝑡𝑦𝑡)}.

(7)

To meet further needs, we also care about solving and expressing the separated polytopes efficiently. Formally, we want to solve 
the following problem:

Definition 3.2 ((𝑡,𝑚)-separation algorithm). 

• Input: dimension 𝑚, 𝑡 vectors 𝑥1,… , 𝑥𝑡 in ℝ𝑚.

• Output: a clockwise enumeration of vertices of 𝑃1,… , 𝑃𝑚 such that 𝑃𝑖 is the polytope {𝛽 ∈ Δ𝑡 ∶ 𝛽1[(𝑥1)𝑖 − (𝑥1)𝑗 ] +⋯+ 𝛽𝑡[(𝑥𝑡)𝑖 −
(𝑥𝑡)𝑗 ] ≥ 0,∀𝑗 ∈ [𝑚]}.

When 𝑡 ≤ 3, we represent the polytopes with a clockwise enumeration of its vertices. In this case, the separation problem can be 
restated as a famous problem in computational geometry called the half-plane intersection problem [33]. Benefiting from geometric 
intuitions, we obtain polynomial-time algorithms for 𝑡 ≤ 3, as stated below.

Theorem 3.2. There exists a (2,𝑚)-separation algorithm in time 𝑂(𝑚 log𝑚).

Theorem 3.3. There exists a (3,𝑚)-separation algorithm in time 𝑂(𝑚2 log𝑚).
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While these algorithms are standard in computational geometry, for completeness, we still provide the detailed algorithms and 
complexity analysis in Appendix A.4 and Appendix A.5.

We also note that if we only require the “appropriate” expression in Definition 3.2 to be a vertex enumeration of the polytope, 
then in general cases, it can be stated in the famous vertex enumeration problem.

Suppose we are given a polytope in ℝ𝑡 determined by 𝑚 inequalities, then McMullen’s upper bound theorem [34] gives a close 
upper bound (𝑚𝑡∕2) on the number of its vertices |𝑉 |.

Several algorithms are proposed for the vertex enumeration problem. Using the pivoting method, Dyer [35] proposed an 
𝑂(𝑚𝑡2|𝑉 |)-time algorithm. Then, Avis and Fukuda [36] proposed an 𝑂(𝑚𝑡|𝑉 |)-time algorithm, which has remained state-of-the-art 
since then. For a brief summary of this subject, see [37] as a reference.

We note that our algorithms (Algorithm 2 and Algorithm 3) are faster than these algorithms in the corresponding cases. Indeed, 
when 𝑡 = 2, the time complexity of vertex enumeration is 𝑂(𝑚3). For 𝑡= 3, the time complexity is 𝑂(𝑚3.5).

It is also worth mentioning the complexity results regarding this problem. For the unbounded case (polyhedra), vertex enumeration 
has been proven to be NP-hard [38]. However, for the bounded case (the case of our problem, which is bounded in Δ𝑡), it is still an 
open problem. There is a strong indication of NP-hardness, though, as [39] proved that uniformly sampling the vertices is NP-hard.

3.3.2. Optimization over polytopes

Using linear piece separation, we have transferred the form of the problem into solving the subproblem (7). To solve this sub-

problem, we first derive optimal conditions for a slightly generalized problem. We present the results used for algorithms in this part. 
Since the proof of these results is either standard or technical, we defer them to the appendix.

For differentiable functions 𝑔1, 𝑔2 and polytope 𝑆 , consider the following optimization problem:

minimize max{𝑔1(𝑥), 𝑔2(𝑥)}

s.t. 𝑥 ∈ 𝑆.
(8)

We begin our preparation by a direct application of the KKT condition (see theorem 12.1 in [40] for details).

Lemma 3.1. Consider any 𝑈 ∈ ℝ𝑘×𝑛, 𝑉 ∈ ℝ𝑘,𝑅 ∈ ℝ𝑗×𝑛, 𝑇 ∈ ℝ𝑗 such that every row of 𝑈,𝑅 is not zero. Define a convex polytope 𝑆 =
{𝑥 ∈ℝ𝑛 ∶𝑈𝑥 ≤ 𝑉 ,𝑅𝑥 = 𝑇 }. Suppose 𝑔1 and 𝑔2 are two real-valued differentiable functions defined on 𝑆 . Set 𝑔 =max{𝑔1, 𝑔2}. If the ranges 
of 𝑔1, 𝑔2 on 𝑆 are [𝑚1,𝑀1] and [𝑚2,𝑀2], respectively, then we have:

1. If 𝑚1 ≥𝑀2, min𝑆 𝑔(𝑥) =𝑚1. The minimum is attained precisely on set 𝑔−11 (𝑚1).
2. If 𝑚2 ≥𝑀1, min𝑆 𝑔(𝑥) =𝑚2. The minimum is attained precisely on set 𝑔−12 (𝑚2).
3. Otherwise, min𝑆 𝑔(𝑥) = min𝑆∗ 𝑔(𝑥), where 𝑆∗ is the union of following sets:

{𝑥 ∈ 𝑆 ∶ 𝑔1(𝑥) = 𝑔2(𝑥)},⎧⎪⎨⎪⎩
𝑥 ∈ 𝑆 ∶ 𝑔1(𝑥) > 𝑔2(𝑥),

∃𝜆 ≥ 0 such that ∇𝑔1(𝑥) + 𝜆𝖳
(
𝑈

𝑅

)
= 0, ∀𝑖 ∈ [𝑘], 𝜆𝑖(𝑈𝑖𝑥− 𝑉𝑖) = 0

⎫⎪⎬⎪⎭ ,⎧⎪⎨⎪⎩
𝑥 ∈ 𝑆 ∶ 𝑔2(𝑥) > 𝑔1(𝑥),

∃𝜆 ≥ 0 such that ∇𝑔2(𝑥) + 𝜆𝖳
(
𝑈

𝑅

)
= 0,∀𝑖 ∈ [𝑘], 𝜆𝑖(𝑈𝑖𝑥− 𝑉𝑖) = 0

⎫⎪⎬⎪⎭ .
And the minimum must be attained on 𝑆∗.

The proof is presented in Appendix A.1.

Now we turn to polytopes. For concepts in polytopes, see Appendix C and textbook [41]. The following proposition captures the 
relationship of geometric properties and constraint expressions, which helps in the further analysis of the minimization problem on 
a certain polytope.

Proposition 3.1. Consider the polytope 𝑆 =
{
𝑥 ∈ℝ𝑛 ∶ 𝑎𝖳

𝑖
𝑥 ≤ 𝑏𝑖,∀𝑖 ∈ [𝑘]

}
, where 𝑎𝑖 ∈ ℝ𝑛 ⧵ {0}, 𝑏𝑖 ∈ ℝ. Suppose the dimension of 𝑆 , 

denoted by dim(𝑆), is 𝑚 ≤ 𝑛. Then we have

1. There exists vectors 𝑢1,… , 𝑢𝑛−𝑚 ∈ℝ𝑛 and real numbers 𝑣1,… , 𝑣𝑛−𝑚 ∈ℝ such that the affine hull aff(𝑆) of 𝑆 can be written in the form {
𝑥 ∈ℝ𝑛 ∶ 𝑢𝖳

𝑖
𝑥 = 𝑣𝑖,∀𝑖 ∈ [𝑛−𝑚]

}
.

2. Vector 𝑑 is parallel to 𝑆 (denoted by 𝑑 ∥ 𝑆) if and only if for every 𝑖∈ [𝑛−𝑚], 𝑢𝖳
𝑖
𝑑 = 0.

The representations of geometric concepts about 𝑆 can be presented in the following order.
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3. (Representation of 𝑆) There exists a set 𝑊 ⊆ [𝑘] of indices such that:

𝑆 =
{
𝑥 ∈ℝ𝑛 ∶ 𝑢𝖳𝑖 𝑥 = 𝑣𝑖,∀𝑖 ∈ [𝑛−𝑚]

}
∩

{
𝑥 ∈ℝ𝑛 ∶ 𝑎𝖳𝑖 𝑥 ≤ 𝑏𝑖,∀𝑖 ∈𝑊

}
.

4. (Representation of boundary 𝜕𝑆 and interior 𝑆◦) Moreover:

𝜕𝑆 = {𝑥 ∈ 𝑆 ∶ ∃𝑖 ∈𝑊 ,𝑎𝖳𝑖 𝑥 = 𝑏𝑖}, 𝑆
◦ = {𝑥 ∈ 𝑆 ∶ ∀𝑖 ∈𝑊 ,𝑎𝖳𝑖 𝑥 < 𝑏𝑖}.

5. (Representation of facets of 𝑆) For every 𝑗 ∈𝑊 , 𝑆′
𝑗
∶=

{
𝑥 ∈ 𝑆 ∶ 𝑎𝖳

𝑗
𝑥 = 𝑏𝑗

}
is a distinct facet of 𝑆 , and every facet of 𝑆 coincides with 

exactly one 𝑆′
𝑗
.

6. (Representation of faces of 𝑆) For any face 𝑇 of 𝑆 , dim(𝑇 ) ≤𝑚− 1, and 𝑇 can be expressed as the intersection of facets of 𝑆 .

The proof is presented in Appendix A.2.

Now we combine discrete geometry and optimization. We derive three corollaries from Lemma 3.1 to deal with simpler cases.

Corollary 3.1. For any convex polytope 𝑆 ∈ℝ𝑛 such that dim(𝑆) = 𝑛, suppose without loss of generality that it has a form that 𝑆 = {𝑥 ∈
ℝ𝑛 ∶𝑈𝑥 ≤ 𝑉 }, where 𝑈 ∈ℝ𝑚×𝑛, 𝑉 ∈ℝ𝑚 and no rows of 𝑈 are zero. We have the following statements.

1. The minimum of 𝑔 on 𝑆 must be obtained on

𝑆+ =𝜕𝑆 ∪ {𝑥 ∈ 𝑆 ∶ ∇𝑔1(𝑥) = 0} ∪ {𝑥 ∈ 𝑆 ∶ ∇𝑔2(𝑥) = 0}

∪{𝑥 ∈ 𝑆 ∶ 𝑔1(𝑥) = 𝑔2(𝑥)}.
(9)

2. Let 𝑒1,… , 𝑒𝑛 be the standard orthonormal basis. For any 𝑒𝑖, we can divide the facets of 𝑆 into two collections: 𝑃𝑖 and 𝑁𝑖 according to 
whether they are parallel to 𝑒𝑖. Define 𝜕𝑆𝑃 =

⋃
𝑇∈𝑃𝑖 𝑇 and 𝜕𝑆𝑁 =

⋃
𝑇∈𝑁𝑖

𝑇 . 𝜕𝑆𝑃 ∪ 𝜕𝑆𝑁 = 𝜕𝑆 . For any index 𝑖, statement 1 still holds if 
we substitute 𝜕𝑆 with(

𝜕𝑆𝑃
⋂ ⋃

𝑘=1,2

{
𝑥 ∈ 𝑆 ∶

𝜕𝑔𝑘

𝜕𝑥𝑖
(𝑥) = 0

})⋃
𝜕𝑆𝑁.

3. If the polytope 𝑆 has the form [𝑚1,𝑀1] × [𝑚2,𝑀2] ×⋯ × [𝑚𝑛,𝑀𝑛] with 𝑚𝑖 <𝑀𝑖, then the minimum must be obtained on

𝑆+ =
{
𝑥 ∈ℝ𝑛 ∶ ∀𝑖, 𝑥𝑖 ∈ {𝑚𝑖,𝑀𝑖}

}⋃
⋃

𝑖∈[𝑛],𝑘∈{1,2}

({
𝑥 ∈ 𝑆 ∶

𝜕𝑔𝑘

𝜕𝑥𝑖
(𝑥) = 0

})⋃
{
𝑥 ∈ 𝑆 ∶ 𝑔1(𝑥) = 𝑔2(𝑥)

}
.

(10)

The proof is presented in Appendix A.3.

Statement 1 can be used to compute the minimum of 𝑔 on any polytope 𝑆 with recursion. Since all components of 𝑆+ have at 
most (𝑛−1) dimensions (𝜕𝑆 can be split into many facets), we can compress certain dimensions and recursively compute the (𝑛−1)-
dimensional case. Statement 3 is a special case of statement 2, where the polytope is a hyperrectangle. Although we only present 
algorithms to solve cases where 𝑡 ≤ 3, we present statements 2 and 3 in a very general form. They are useful for further investigation 
of cases with 𝑡 > 3.

3.4. Detailed algorithms

With all above preparations, we are now able to derive our algorithms for the optimal mixing problem.

We first consider the optimal (1, 𝑡)-mixing problem. Note that this problem can be directly transformed into a linear program given 
by Algorithm 1. We denote the complexity of solving a standard-form linear program with 𝑡 variables and 𝑚 inequalities by 𝐿(𝑡,𝑚), 
which is polynomial in 𝑡 and 𝑚. See, e.g. [42]. Then, the complexity of our optimal (1, 𝑡)-mixing algorithm is 𝑂(𝑚𝑛𝑡+𝐿(𝑡,𝑚)).

To avoid overwhelming the paper with detailed case-by-case discussions, we only give sketches of the optimal (2,2) and (2,3)-
mixing algorithms here in Algorithm 2 and Algorithm 3. The full process, correctness, and time-complexity analysis are presented in 
Appendix A.6 and Appendix A.7.

4. An algorithm for approximate optimal mixing problems

In this section, we present an algorithm solving any 𝜖-optimal (𝑠, 𝑡)-mixing problem. Recall that the 𝜖-optimal (𝑠, 𝑡)-mixing problem 
is defined as follows.

Definition 4.1 (𝜖-Optimal (𝑠, 𝑡)-mixing problem). Given 𝜖 > 0, the 𝜖-optimal (𝑠, 𝑡)-mixing problem has the following input and output:

• Input: Bimatrix game (𝑅,𝐶), mixed strategies 𝑥1,… , 𝑥𝑠 of the row player and 𝑦1,… , 𝑦𝑡 of the column player, and an 𝜖 > 0.
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Algorithm 1 Optimal (1, 𝑡)-mixing algorithm.

Input: An 𝑚× 𝑛 bimatrix game (𝑅,𝐶), mixed strategies 𝑥1 for the row player and 𝑦1, 𝑦2 ,… , 𝑦𝑡 for the column player.

Output: 𝛽 ∈Δ𝑡 that minimizes 𝑓 (𝑥1 , 𝛽1𝑦1 +⋯+ 𝛽𝑡𝑦𝑡).
1: Calculate and store the 𝑚-dimensional vectors 𝑅𝑦1,… ,𝑅𝑦𝑡 and the values 𝑥𝖳1𝑅𝑦1 …𝑥𝖳

𝑡
𝑅𝑦𝑡 . // This can be done by matrix multiplication within 

𝑂(𝑚𝑛𝑡+𝑚𝑡) time.

2: Solve the optimal 𝛼 of the following linear program and output it.

min
𝛼

ℎ

s.t. ℎ ≥max(𝐶𝖳𝑥1) − 𝛼1(𝑥𝖳1𝐶𝑦1) −⋯− 𝛼𝑡(𝑥𝖳𝑡 𝐶𝑦𝑡),

for every 𝑖 ∈ [𝑚], 𝑡 ≥ 𝛼1(𝑅𝑦1)𝑖 +⋯+ 𝛼𝑡(𝑅𝑦𝑡)𝑖−

𝛼1(𝑥𝖳1𝑅𝑦1) −⋯− 𝛼𝑡(𝑥𝖳𝑡 𝑅𝑦𝑡),

for every 𝑗 ∈ [𝑡], 𝛼𝑗 ≥ 0,

𝛼1 +⋯+ 𝛼𝑡 = 1.

// The problem is to solving a non-negative linear programming problem with 𝑚+ 1 constraints and 𝑡+ 1 variables.

Algorithm 2 Optimal (2,2)-mixing algorithm.

Input: A size 𝑚× 𝑛 bimatrix game (𝑅,𝐶), mixed strategies 𝑥1, 𝑥2 for the row player and 𝑦1, 𝑦2 for the column player.

Output: 𝛼, 𝛽 ∈Δ2 that minimizes 𝑓 (𝛼1𝑥1 + 𝛼2𝑥2, 𝛽1𝑦1 + 𝛽2𝑦2).
1: Apply the (2, 𝑛)-separation algorithm (see Appendix A.4) for 𝛼 that outputs separated polytopes 𝑃𝑅

𝑖
, where 𝑖 ∈ [𝑛] (actually intervals of 𝛼1). // Time complexity 

𝑂(𝑛 log𝑛)
2: Apply the (2,𝑚)-separation algorithm (see Appendix A.4) for 𝛽 that outputs separated polytopes 𝑃𝐶

𝑗
, where 𝑗 ∈ [𝑚] (actually intervals of 𝛽1). // Time com-

plexity 𝑂(𝑚 log𝑚)
3: Compute the exact form of 𝐹𝑖(𝛼, 𝛽) = 𝑓𝑖(𝛼𝑥1 + (1 − 𝛼)𝑥2, 𝛽𝑦1 + (1 − 𝛽)𝑦2), where 𝑖∈ {𝑅,𝐶}. // Time complexity 𝑂(𝑚𝑛)
4: for 𝑖 = 1 ∶ 𝑛, 𝑗 = 1 ∶𝑚 do

5: Minimize 𝑓 in each grid 𝑃𝑅
𝑖
× 𝑃𝐶

𝑗
. Apply statement 3 in Corollary 3.1. It suffices to scan the following regions:

1. Points with 𝜕𝐹𝑘(𝛼, 𝛽)∕𝜕𝛼 = 0 or 𝜕𝐹𝑘(𝛼, 𝛽)∕𝜕𝛽 = 0, where 𝑘=𝑅,𝐶 .

2. The four vertices of its domain.

3. Points with 𝐹𝑅(𝛼, 𝛽) = 𝐹𝐶 (𝛼, 𝛽).

// For details, see Appendix 3.
6: end for

// We can show that each case can be done in constant time over 𝑚,𝑛. Thus, the time complexity is 𝑂(𝑚𝑛).
7: Finally, compare the 𝑓 -values of the minimum on the 𝑚𝑛 grids and obtain the global minimum of 𝑓 on Δ2 ×Δ2 . // Time complexity 𝑂(𝑚𝑛)

Algorithm 3 Optimal (2,3)-mixing algorithm.

Input: A size 𝑚× 𝑛 bimatrix game (𝑅,𝐶), mixed strategies 𝑥1, 𝑥2 for the row player and 𝑦1, 𝑦2, 𝑦3 for the column player.

Output: 𝛼 ∈Δ2 , 𝛽 ∈Δ3 that minimizes 𝑓 (𝛼1𝑥1 + 𝛼2𝑥2, 𝛽1𝑦1 + 𝛽2𝑦2 + 𝛽3𝑦3).
1: Apply the (2, 𝑛)-separation algorithm (Appendix A.4) for 𝛼 that outputs separated polytopes 𝑃𝑅

𝑖
, 𝑖 ∈ [𝑛] (Actually are intervals for 𝛼1). // Time complexity 

𝑂(𝑛 log𝑛)
2: Apply the (3,𝑚)-separation algorithm (Appendix A.5) for 𝛽 that outputs separated polytopes 𝑃𝐶

𝑗
, 𝑗 ∈ [𝑚]. // Time complexity 𝑂(𝑚2 log𝑚)

3: Compute the exact form of 𝐹𝑖(𝛼, 𝛽, 𝛾) = 𝑓𝑖(𝛼𝑥1 + (1 − 𝛼)𝑥2, 𝛽𝑦1 + 𝛾𝑦2 + (1 − 𝛽 − 𝛾)𝑦3), 𝑖 ∈𝑅,𝐶 . // Time complexity 𝑂(𝑚𝑛)
4: for 𝑖 = 1 ∶ 𝑛, 𝑗 = 1 ∶𝑚 do

5: Minimize 𝑓 in each grid 𝑃𝑅
𝑖
× 𝑃𝐶

𝑗
. Apply statement 2 in Corollary 3.1, it suffices to scan the following regions:

1. (𝛼, 𝛽) belongs to side surfaces of 𝑆 and

(a) either there exists 𝑘∈𝑅,𝐶 such that 𝜕𝐹𝑘∕𝜕𝛾 = 0, or

(b) (𝛼, 𝛽) is in the intersection of side surfaces and top/bottom surfaces.

2. (𝛼, 𝛽) belongs to top/bottom surfaces of 𝑆 and

(a) there exists 𝑘∈𝑅,𝐶 such that either 𝜕𝐹𝑘∕𝜕𝛼 = 0 or 𝜕𝐹𝑘∕𝜕𝛽 = 0, or

(b) (𝛼, 𝛽) is in the intersection of side surfaces and top/bottom surfaces.

3. 𝐹𝑅(𝛼, 𝛽) = 𝐹𝐶 (𝛼, 𝛽).
4. ∇𝐹𝑅(𝛼, 𝛽) = 0 or ∇𝐹𝐶 (𝛼, 𝛽) = 0.

// For details, see Appendix 4
6: end for

// We can show that each case can be done in 𝑂(𝑚) time. Thus, the time complexity is 𝑂(𝑚2𝑛).
7: Finally, compare the 𝑓 -values of the minimum on the 𝑚𝑛 grids, and obtain the global minimum of 𝑓 on Δ2 ×Δ3 . // Time complexity 𝑂(𝑚𝑛)
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• Output: Coefficients �̃� ∈Δ𝑠, 𝛽 ∈Δ𝑡 such that for any 𝛼 ∈Δ𝑠, 𝛽 ∈Δ𝑡, the following inequality holds:

𝑓 (�̃�1𝑥1 +⋯+ �̃�𝑠𝑥𝑠, 𝛽1𝑦1 +⋯+ 𝛽𝑡𝑦𝑡) ≤ 𝑓 (𝛼1𝑥1 +⋯+ 𝛼𝑠𝑥𝑠, 𝛽1𝑦1 +⋯+ 𝛽𝑡𝑦𝑡) + 𝜖.

The main result in this section is the following theorem.

Theorem 4.1. There exists an algorithm solving any 𝜖-optimal (𝑠, 𝑡)-mixing problem in time poly(𝑚,𝑛, 𝑠, 𝑡)
(
𝑒+ 𝑒 √

𝜖∕2

)𝑠+𝑡
and space 

poly(𝑚,𝑛, 𝑠, 𝑡).

Corollary 4.1. For 𝜖-optimal (𝑠, 𝑡)-mixing problem, when 𝑠, 𝑡 are constant, there exists an FPTAS; when 𝑠, 𝑡=𝑂(log𝑛), there exists a PTAS.

We note that term 
(
𝑒+ 𝑒 √

𝜖∕2

)𝑠+𝑡
is unlikely to be improved to poly(𝑚,𝑛, 𝑠, 𝑡,1∕𝜖). Otherwise, by taking all pure strategies as 

input, we can obtain an FPTAS for 𝜖-NE, which is proved by Theorem 1.3 in [2] to be impossible unless PPAD ⊆ P.

As is observed in Section 3, the objective function 𝑓 contains the maximum terms and bilinear terms. The bilinear terms cause 
non-convexity, which makes it very hard to find the global minimum.

Based on such observations, our method adopts the following idea. First, we use small grids to cover the whole domain. Next, on 
each grid, we use linear functions to approximate the bilinear terms. After the linear approximation, the objective function becomes 
piecewise linear, which can be solved by linear programming. By a delicate selection of grid, we can ensure that the optimal solution 
of the linear approximation is close to the optimal solution of the original problem, thus giving a close enough approximation. Finally, 
we output the best solution among all grids.

The algorithm is described in Algorithm 4.

Algorithm 4 Algorithm for 𝜖-Optimal (𝑠, 𝑡)-Mixing Problem.

Input: An 𝑚× 𝑛 bimatrix game (𝑅,𝐶), mixed strategies 𝑥1,… , 𝑥𝑠 of the row player and 𝑦1,… , 𝑦𝑡 of the column player, and a precision parameter 𝜖 > 0.

Output: �̃� ∈Δ𝑠 , 𝛽 ∈Δ𝑡 that solves the 𝜖-optimal (𝑠, 𝑡)-mixing problem.

1: Let 𝑋 ∶= (𝑥1,… , 𝑥𝑠) and 𝑌 ∶= (𝑦1 ,… , 𝑦𝑡).
2: 𝑔𝑅(𝛼, 𝛽) ∶= 𝑓𝑅(𝑋𝛼,𝑌 𝛽) = max{𝑅𝑌 𝛽} − 𝛼𝖳𝑋𝖳𝑅𝑌 𝛽,

𝑔𝐶 (𝛼, 𝛽) ∶= 𝑓𝐶 (𝑋𝛼,𝑌 𝛽) = max{𝐶𝖳𝑋𝛼} − 𝛼𝖳𝑋𝖳𝐶𝑌 𝛽,

𝑔(𝛼, 𝛽) ∶= max{𝑔𝑅(𝛼, 𝛽), 𝑔𝐶 (𝛼, 𝛽)},
𝐿𝑅(𝛼, 𝛽;𝛼𝑜, 𝛽𝑜) ∶= max{𝑅𝑌 𝛽} − 𝛼𝖳

𝑜
𝑋𝖳𝑅𝑌 𝛽 − 𝛼𝖳𝑋𝖳𝑅𝑌 𝛽𝑜 + 𝛼𝖳𝑜 𝑋

𝖳𝑅𝑌 𝛽𝑜,

𝐿𝐶 (𝛼, 𝛽;𝛼𝑜, 𝛽𝑜) ∶= max{𝐶𝖳𝑋𝛼} − 𝛼𝖳
𝑜
𝑋𝖳𝐶𝑌 𝛽 − 𝛼𝖳𝑋𝖳𝐶𝑌 𝛽𝑜 + 𝛼𝖳𝑜 𝑋

𝖳𝐶𝑌 𝛽𝑜,

𝐿(𝛼, 𝛽;𝛼𝑜, 𝛽𝑜) ∶= max{𝐿𝑅(𝛼, 𝛽;𝛼𝑜, 𝛽𝑜),𝐿𝐶 (𝛼, 𝛽;𝛼𝑜, 𝛽𝑜)}.

3: Let 𝑝 ∶=
⌈
𝑠∕

√
𝜖∕2

⌉
and 𝑞 ∶=

⌈
𝑡∕

√
𝜖∕2

⌉
.

4: Form the following points:

(
𝛼(𝑖1 ,…,𝑖𝑠 ), 𝛽(𝑗1 ,…,𝑗𝑡 )

)
∶=

(
𝑖1∕𝑝,… , 𝑖𝑠∕𝑝, 𝑗1∕𝑞,… , 𝑗𝑡∕𝑞

)
,

where 𝑖1,… , 𝑖𝑠 ∈ [𝑝], ∑𝑠

𝑘=1 𝑖𝑘 = 𝑝, 𝑗1,… , 𝑗𝑡 ∈ [𝑞], and ∑𝑡

𝑘=1 𝑗𝑘 = 𝑞.

// There are (𝑝+𝑠−1
𝑠−1 

)(𝑞+𝑡−1
𝑡−1 

)
points in total.

5: for 𝑖1,… , 𝑖𝑠 ∈ [𝑝], ∑𝑠

𝑘=1 𝑖𝑘 = 𝑝, 𝑗1,… , 𝑗𝑡 ∈ [𝑞], ∑𝑡

𝑘=1 𝑗𝑘 = 𝑞 do

6: Define the region

Γ(𝑖1,… , 𝑖𝑠, 𝑗1,… , 𝑗𝑡) ∶= {(𝛼, 𝛽) ∶ 𝛼 ∈Δ𝑠, 𝛽 ∈Δ𝑡 ,

for every 𝑘 ∈ [𝑠], 𝛼𝑘 ∈ [ 𝑖𝑘−1
𝑝 ,

𝑖𝑘+1
𝑝 ], for every 𝑙 ∈ [𝑡], 𝛽𝑙 ∈ [ 𝑗𝑙−1

𝑞
,
𝑗𝑙+1
𝑞

].}

7: Solve the optimal 𝛼∗(𝑖1 ,…,𝑖𝑠 )
, 𝛽∗(𝑗1 ,…,𝑗𝑡 )

of the following optimization problem.

min
𝛼,𝛽

𝐿
(
𝛼, 𝛽;𝛼(𝑖1 ,…,𝑖𝑠 ) , 𝛽(𝑗1 ,…,𝑗𝑡 )

)
,

s.t. (𝛼, 𝛽) ∈ Γ(𝑖1,… , 𝑖𝑠, 𝑗1,… , 𝑗𝑡).
(11)

// Note that this can be formulated in a linear program with 𝑚+𝑛+3𝑠+3𝑡+2 constraints and 𝑠+ 𝑡+1 variables. The problem 
is reduced to solving a non-negative linear programming.

8: end for

9: Output the 𝛼∗(𝑖1 ,…,𝑖𝑠 )
, 𝛽∗(𝑗1 ,…,𝑗𝑡 )

with the smallest 𝑔
(
𝛼∗(𝑖1 ,…,𝑖𝑠 )

, 𝛽∗(𝑗1 ,…,𝑗𝑡 )

)
among all 𝑖1,… , 𝑖𝑠, 𝑗1,… , 𝑗𝑡 .

Now we verify the correctness of Algorithm 4 and analyze its time complexity. We first show that the linear approximation is 
close to the original function.

We need the following lemma.
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Lemma 4.1. Consider two functions 𝑓1, 𝑓2 defined on the same set  , if |𝑓1(𝑥)−𝑓2(𝑥)| ≤ 𝜖 for all 𝑥 ∈  , then |min𝑥 𝑓1(𝑥)−min𝑥 𝑓2(𝑥)| ≤ 𝜖
and |max𝑥 𝑓1(𝑥) − max𝑥 𝑓2(𝑥)| ≤ 𝜖.
Proof. Let 𝑥1 be a global minimum point of 𝑓1 and 𝑥2 be a global minimum point of 𝑓2. Then we have

𝑓2(𝑥2) ≥ 𝑓1(𝑥2) − 𝜖 (by assumption)

≥ 𝑓1(𝑥1) − 𝜖. (since 𝑥1 is the minimizer of 𝑓1)

Symmetrically, we have 𝑓1(𝑥1) ≥ 𝑓2(𝑥2) − 𝜖. Thus we have

|𝑓1(𝑥1) − 𝑓2(𝑥2)| ≤ 𝜖,
as desired.

The proof of the maximum is similar. □

Then we have the following lemma, which shows that the linear approximation is good enough for the original problem on each 
grid.

Lemma 4.2. On each Γ(𝑖1,… , 𝑖𝑠, 𝑗1,… , 𝑗𝑡), the following inequalities hold:

• |𝑔(𝛼, 𝛽) −𝐿(𝛼, 𝛽;𝛼(𝑖1 ,…,𝑖𝑠), 𝛽(𝑗1 ,…,𝑗𝑡))| ≤ 𝜖∕2,

• |min(𝛼,𝛽) 𝑔(𝛼, 𝛽) − min(𝛼,𝛽)𝐿(𝛼, 𝛽;𝛼(𝑖1 ,…,𝑖𝑠), 𝛽(𝑗1 ,…,𝑗𝑡))| ≤ 𝜖∕2.

Proof. To simplify the notation, we denote 𝛼(𝑖1 ,…,𝑖𝑠) by 𝛼𝑜 and 𝛽(𝑗1 ,…,𝑗𝑡) by 𝛽𝑜. We further denote Γ(𝑖1,… , 𝑖𝑠, 𝑗1,… , 𝑗𝑡) by Γ𝑜.
We first show that |𝐿𝑅 − 𝑔𝑅| ≤ 𝜖∕2 on Γ𝑜. For any (𝛼, 𝛽) ∈ Γ(𝛼𝑜, 𝛽𝑜), by definition, we have:

|𝐿𝑅(𝛼, 𝛽;𝛼𝑜, 𝛽𝑜) − 𝑔𝑅(𝛼, 𝛽)|
=|(𝛼 − 𝛼𝑜)𝖳𝑋𝖳𝑅𝑌 (𝛽 − 𝛽𝑜)|
≤

𝑠 ∑
𝑖=1 

𝑡 ∑
𝑗=1 

|𝛼𝑖 − 𝛼𝑜,𝑖| ⋅ |𝛽𝑗 − 𝛽𝑜,𝑗 | ⋅ |(𝑋𝖳𝑅𝑌 )𝑖𝑗 |
≤

𝑠 ∑
𝑖=1 

𝑡 ∑
𝑗=1 

1 
𝑝𝑞

|(𝑋𝖳𝑅𝑌 )𝑖𝑗 |
⏟ ⏞⏞⏞⏞⏟ ⏞⏞⏞⏞⏟

≤1 

≤
𝑠𝑡 
𝑝𝑞

≤
𝑠𝑡 

𝑠∕
√
𝜖∕2 ⋅ 𝑡∕

√
𝜖∕2

= 𝜖∕2.

Similarly, we have |𝐿𝐶 − 𝑔𝐶 | ≤ 𝜖∕2 on Γ𝑜. Since 𝐿 =max{𝐿𝑅,𝐿𝐶} and 𝑔 =max{𝑔𝑅, 𝑔𝐶}, taking  = {𝑅,𝐶}, by Lemma 4.1, we 
have |𝐿− 𝑔| = |max𝑥∈ 𝐿𝑥 −max𝑥∈ 𝑔𝑥| ≤ 𝜖∕2 on Γ𝑜, which is the first part of the lemma.

Then, taking  = Γ𝑜, by Lemma 4.1, we have|||| min 
(𝛼,𝛽)∈

𝑔(𝛼, 𝛽) − min 
(𝛼,𝛽)∈

𝐿(𝛼, 𝛽;𝛼𝑜, 𝛽𝑜)
|||| ≤ 𝜖∕2,

which is the second part of the lemma. □

Next we show that all grids cover the whole domain Δ𝑠 ×Δ𝑡.

Lemma 4.3. For any (𝛼, 𝛽) ∈ Δ𝑠 ×Δ𝑡, there exists 𝑖1,… , 𝑖𝑠, 𝑗1,… , 𝑗𝑡 such that (𝛼, 𝛽) ∈ Γ(𝑖1,… , 𝑖𝑠, 𝑗1,… , 𝑗𝑡).

Proof. For any (𝛼, 𝛽) ∈ Δ𝑠 ×Δ𝑡, take (𝑖1,… , 𝑖𝑠, 𝑗1,… , 𝑗𝑡) by the following procedure:

Algorithm 5 Selection of 𝑖1,… , 𝑖𝑠.

Input: 𝛼 ∈Δ𝑠 , 𝛽 ∈Δ𝑡 .

Output: 𝑖1,… , 𝑖𝑠, 𝑗1,… , 𝑗𝑡 .

1: for 𝑘 from 1 to 𝑠 do

2: if
∑𝑘−1

𝑙=1 (𝛼𝑙 −
𝑖𝑙

𝑝 ) ≥ 0 then

3: Set 𝑖𝑘 = ⌈𝑝𝛼𝑘⌉
4: else

5: Set 𝑖𝑘 = ⌊𝑝𝛼𝑘⌋
6: end if

7: end for

The selection of 𝑗1,… , 𝑗𝑡 is similar. Now we show that the procedure is correct.
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First, we show 𝑖1 +⋯+ 𝑖𝑠 = 𝑝, 𝑖1,… , 𝑖𝑠 ∈ [𝑝]. Since 𝛼 ∈Δ𝑠, it is clear that 𝑖1,… , 𝑖𝑠 ∈ [𝑝]. Then we show that the sum is equal to 𝑝.

For this purpose, we show 
||||∑𝑘

𝑙=1

(
𝛼𝑙 −

𝑖𝑙
𝑝 
)|||| < 1

𝑝 for any 𝑘 ∈ [𝑠] by induction over 𝑘.

• For 𝑘 = 1, we have |||𝛼1 − 𝑖1
𝑝 
||| < 1

𝑝 , since 𝛼1 ∈ [0,1].

• For 𝑘 > 1, suppose we have 
||||∑𝑘−1

𝑙=1

(
𝛼𝑙 −

𝑖𝑙
𝑝 
)|||| < 1

𝑝 by induction hypothesis. If 
∑𝑘−1
𝑙=1

(
𝛼𝑙 −

𝑖𝑙
𝑝 
)
≥ 0, then by 𝑖𝑘 = ⌈𝑝𝛼𝑘⌉, we have 

−1
𝑝 < 𝛼𝑘 −

𝑖𝑘
𝑝 ≤ 0, thus

−1
𝑝 
<

𝑘 ∑
𝑙=1 

(
𝛼𝑙 −

𝑖𝑙

𝑝 

)
=
𝑘−1∑
𝑙=1 

(
𝛼𝑙 −

𝑖𝑙

𝑝 

)
+

(
𝛼𝑘 −

𝑖𝑘

𝑝 

)
<

1
𝑝 
− 0 = 1

𝑝 

as desired. Another case is similar.

Thus, we have 
||||∑𝑠

𝑙=1

(
𝛼𝑙 −

𝑖𝑙
𝑝 
)|||| < 1

𝑝 .

Note that 
∑𝑠
𝑙=1 𝛼𝑙 = 1, we have |||1 −∑𝑠

𝑙=1
𝑖𝑙
𝑝 
||| < 1

𝑝 . Thus, ||𝑝−∑𝑠
𝑙=1 𝑖𝑙

|| < 1. Since 𝑖1,… , 𝑖𝑠 ∈ [𝑝], we have 
∑𝑠
𝑙=1 𝑖𝑙 ∈ℤ. Thus, we must 

have 𝑖1 +⋯+ 𝑖𝑠 = 𝑝.

Finally, we show that (𝛼, 𝛽) ∈ Γ(𝑖1,… , 𝑖𝑠, 𝑗1,… , 𝑗𝑡). It simply follows by the construction of 𝑖𝑘 ’s and 𝑗𝑘’s and the definition of 
Γ. □

We summarize the above two lemmas in the following proposition.

Proposition 4.1 (Correctness). Algorithm 4 is an 𝜖-optimal (𝑠, 𝑡)-mixing algorithm.

Proof. Suppose the exact solution of the optimal (𝑠, 𝑡)-mixing problem is (𝛼∗, 𝛽∗). By Lemma 4.3, there exists 𝑖1,… , 𝑖𝑠, 𝑗1,… , 𝑗𝑡 such 
that (𝛼∗, 𝛽∗) ∈ Γ(𝑖1,… , 𝑖𝑠, 𝑗1,… , 𝑗𝑡). For simplicity, we denote 𝐿(𝛼, 𝛽;𝛼(𝑖1 ,…,𝑖𝑠), 𝛽(𝑗1 ,…,𝑗𝑡)) by 𝐿(𝛼, 𝛽).

Consider the solution (𝛼′, 𝛽′) = (𝛼∗(𝑖1 ,…,𝑖𝑠)
, 𝛽∗(𝑗1 ,…,𝑗𝑡)

) in (11). It suffices to prove that

||𝑔(𝛼∗, 𝛽∗) − 𝑔(𝛼′, 𝛽′)|| ≤ 𝜖.
By Lemma 4.2 part 1, we have |𝑔(𝛼∗, 𝛽∗) − 𝐿(𝛼′, 𝛽′)| = |min𝛼,𝛽 𝑔(𝛼, 𝛽) − min𝛼,𝛽 𝐿(𝛼, 𝛽)| ≤ 𝜖∕2. By Lemma 4.2 part 2, we have |𝑔(𝛼′, 𝛽′) −𝐿(𝛼′, 𝛽′)| ≤ 𝜖∕2. Thus, by triangular inequality, we have |𝑔(𝛼∗, 𝛽∗) − 𝑔(𝛼′, 𝛽′)| ≤ 𝜖, as desired. □

Finally, we analyze the time complexity of Algorithm 4, which completes the proof of Theorem 4.1.

Proof of Theorem 4.1. First, we need to compute 𝑅𝑌 ,𝑋𝖳𝑅𝑌 ,𝐶𝖳𝑋,𝑋𝖳𝐶𝑌 for further use. This can be done in 𝑂(poly(𝑚,𝑛, 𝑠, 𝑡))
time.

Then, the algorithm enters a loop that repeats 
(𝑝+𝑠−1
𝑠−1 

)(𝑞+𝑡−1
𝑡−1 

)
times. By Stirling’s approximation, we have(

𝑝+ 𝑠− 1
𝑠− 1 

)
≤

(𝑝+ 𝑠− 1)𝑠−1

(𝑠− 1)! 
= (𝑝+ 𝑠− 1)𝑠−1 ⋅ 𝑠

𝑠! 

=𝑂

(
(𝑝+ 𝑠− 1)𝑠−1

√
𝑠

( 𝑠 
𝑒
)𝑠

)

≤𝑂

⎛⎜⎜⎜⎝
(
(1∕

√
𝜖∕2 + 1)𝑠

)𝑠 √
𝑠

( 𝑠 
𝑒
)𝑠

⎞⎟⎟⎟⎠
=𝑂

(√
𝑠

((
1 √
𝜖∕2

+ 1

)
𝑒

)𝑠)
.

Similarly, we have 
(𝑞+𝑡−1
𝑡−1 

)
≤𝑂

(√
𝑡

(
1 + 𝑒 √

𝜖∕2

)𝑡
)

. Thus, the total number of iterations is 𝑂

(√
𝑠𝑡

(
𝑒+ 𝑒 √

𝜖∕2

)𝑠+𝑡
)

.

In each iteration, we need to solve (11). By a standard transformation, it is equivalent to the following linear program:

min
𝛼,𝛽,𝑡 𝑡,

s.t. 𝑡 ≥ (𝑅𝑌 )𝑖𝛽 − 𝛼𝖳𝑋𝖳𝑅𝑌 𝛽, 𝑖 ∈ [𝑚],

𝑡 ≥ (𝐶𝖳𝑋)𝑗𝛼 − 𝛼𝖳𝑋𝖳𝐶𝑌 𝛽, 𝑗 ∈ [𝑛],
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Find several strategies 𝑥1,⋯ , 𝑥𝑠
of the row player and 𝑦1,⋯ , 𝑦𝑡
of the column player in polyno-

mial time.

Perform specific mixing operations on 
these strategies and obtain the strat-

egy profiles (�̃�1, �̃�1),… , (�̃�𝑢, �̃�𝑢). Next, 
compute 𝑖∗ = argmin1≤𝑖≤𝑢 𝑓 (�̃�𝑖, �̃�𝑖) and 
output the strategy profile (�̃�𝑖∗ , �̃�𝑖∗ ).

Fig. 2. Procedure of the search-and-mix method in the literature. 

Find several strategies 
𝑥1,⋯ , 𝑥𝑠 for the row 
player and 𝑦1,⋯ , 𝑦𝑡 for 
the column player in poly-

nomial time.

Calculate mixing coefficients 𝛼∗ ∈
Δ𝑠, 𝛽

∗ ∈ Δ𝑡 in polynomial time that 
minimize 𝑓 (𝛼1𝑥1 +⋯+ 𝛼𝑠𝑥𝑠, 𝛽1𝑦1 +⋯+
𝛽𝑡𝑦𝑡) as a function in 𝛼 and 𝛽 . Output 
(𝛼∗1𝑥1 +⋯+ 𝛼∗

𝑠
𝑥𝑠, 𝛽

∗
1 𝑦1 +⋯+ 𝛽∗

𝑡
𝑦𝑡).

Fig. 3. The new procedure for the search-and-mix method. 

𝛼 ∈Δ𝑠, 𝛽 ∈Δ𝑡,

𝛼𝑘 ∈ [ 𝑖𝑘−1
𝑝 ,

𝑖𝑘+1
𝑝 ], 𝑘 ∈ [𝑠],

𝛽𝑙 ∈ [ 𝑗𝑙−1
𝑞
,
𝑗𝑙+1
𝑞

], 𝑙 ∈ [𝑡].

It is a linear program with 𝑚+ 𝑛+ 3𝑠+ 3𝑡+ 2 constraints and 𝑠+ 𝑡+ 1 variables, which can be solved in poly(𝑚,𝑛, 𝑠, 𝑡) time [32].

In total, the time complexity of the whole algorithm is given by

poly(𝑚,𝑛, 𝑠, 𝑡) + poly(𝑚,𝑛, 𝑠, 𝑡)
(

𝑒 √
𝜖∕2

)𝑠+𝑡
= poly(𝑚,𝑛, 𝑠, 𝑡)

(
𝑒 √
𝜖∕2

)𝑠+𝑡
. □

5. Applications to the search-and-mix methods

In this section, we show how to apply the optimal mixing problem to make an instance-optimal enhancement to the search-and-

mix methods in the literature. For another use case, we can also use the optimal mixing problem to assemble the different outputs of 
various algorithms for approximate NE in the literature. See Appendix B for some illustrative empirical results.

As is summarized by [12], in the literature, polynomial-time algorithms for approximate NE follow a search-and-mix method. Such 
methods can be divided into two phases. In the search phase, an algorithm computes several strategies of each player in polynomial 
time. In the mixing phase, the algorithm then makes convex combinations of the selected strategies into several strategy profiles and 
outputs the profile with the minimum 𝑓 value. An illustration is presented in Fig. 2.

However, the mixing phases in the literature are ad hoc, since the mixing coefficients are selected specifically for corresponding 
search phase with certain properties. A typical example is as follows.

Example 5.1 (BBM algorithm   [15]). 

• Search phase: Compute an NE (𝑥∗, 𝑦∗) of the zero-sum game (𝑅−𝐶,𝐶 −𝑅).3 Let 𝑔1 = 𝑓𝑅(𝑥∗, 𝑦∗) and 𝑔2 = 𝑓𝐶 (𝑥∗, 𝑦∗). By symmetry, 
assume without loss of generality that 𝑔1 ≥ 𝑔2. Then compute 𝑟1 ∈ br𝑅(𝑦∗) and 𝑏2 ∈ br𝐶 (𝑟1).

• Mixing phase: Mix strategies in the search phase and obtain strategy profiles (𝑥∗ , 𝑦∗) and (𝑟1, (1 − 𝛿2)𝑦∗ + 𝛿2𝑏2), where 𝛿2 =
(1 − 𝑔1)∕(2 − 𝑔1). Output the one with the smaller 𝑓 value.

Note that the mixing coefficient 𝛿2 is chosen specifically for this search phase to produce an optimal approximation bound of 0.38. If 
we choose 𝛿2 to be other values, for example, 1∕2, then it is not hard to show that the approximation guarantee will only be 0.5.

Now, we relate the optimal mixing problem to the search-and-mix methods in the literature. The traditional ad hoc designed 
mixing phases focus too much on the worst case and not useful in practice. However, from the perspective of our work, the mixing 
phase is essentially an optimal mixing problem. We can use the approximate and exact optimal mixing problem to design new mixing 
phases for the search-and-mix methods, which computes the instance-optimal mixing coefficients. The new procedure is presented in 
Fig. 3.

Our exact algorithm for the optimal mixing problem can cover the need of all mixing phases in the literature. Moreover, our 
approximation algorithm can be used for most future mixing phases. For any constant number of strategies in the search phase, 
our approximation algorithm is an FPTAS. Beyond that, when 𝑠, 𝑡 = 𝑂(log𝑛), our approximation algorithm is a PTAS and when 
𝑠, 𝑡 = poly(log𝑛), our approximation algorithm is a QPTAS. They can all be used in the new polynomial-time procedure of the search-

and-mix methods.

3 Computing NE in zero-sum games can be modeled by a linear program and thus can be solved in polynomial time. See, e.g., [24].
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To conclude this section, as an example, we show how to design a new mixing phase for Example 5.1 using the optimal mixing 
problem.

Example 5.2 (New mixing phase for the BBM algorithm). Recall that in the search phase we obtain 𝑥∗, 𝑟1 for the row player and 𝑦∗, 𝑏2 for 
the column player. Then, the new mixing phase is to input payoff matrices 𝑅,𝐶 , row player’s mixed strategies 𝑥∗, 𝑟1, column player’s 
mixed strategies 𝑦∗, 𝑏2, solve the optimal (2,2)-mixing problem to obtain 𝛼∗, 𝛽∗ and then output (𝛼∗𝑥∗ + (1−𝛼∗)𝑟1, 𝛽∗𝑦∗ + (1− 𝛽∗)𝑏2).

6. Conclusion and discussion

In this paper, we study the optimal mixing problem of approximate Nash equilibrium computation in bimatrix games. We develop 
algorithms for the exact and approximate optimal mixing problems. These algorithms can be used to enhance and integrate arbitrary 
existing constant approximate NE algorithms, offering a powerful tool for the design of approximating NE algorithms. Moreover, 
these algorithms allow us to explore the implications of support restrictions on approximate NE, and provide the first upper bound 
on this problem.

6.1. Difficulties in studying exact optimal mixing algorithms

In Theorem 1.1, we stop at (2,3) for the exact optimal mixing problem. However, there is a fair reason for this. In general, the 
optimal mixing problem takes the form of a quadratically constrained quadratic program (QCQP). Recall that the objective function 
in Definition 3.1 can be expanded as follows:

max{max{𝑅(𝛽1𝑦1 +⋯+ 𝛽𝑡𝑦𝑡)} − (𝛼1𝑥1 +⋯+ 𝛼𝑠𝑥𝑠)𝖳𝑅(𝛽1𝑦1 +⋯+ 𝛽𝑡𝑦𝑡),

max{𝐶𝖳(𝛼1𝑥1 +⋯+ 𝛼𝑠𝑥𝑠)} − (𝛼1𝑥1 +⋯+ 𝛼𝑠𝑥𝑠)𝖳𝐶(𝛽1𝑦1 +⋯+ 𝛽𝑡𝑦𝑡)}.

By rewriting the maximum operators as constraints, we can see that the optimal mixing problem is indeed a QCQP:

min 
𝛼,𝛽,𝑧1 ,𝑧2 ,𝑤

𝑤

s.t.

𝑠 ∑
𝑖=1 

𝛼𝑖 = 1, 𝛼𝑖 ≥ 0, 
𝑡 ∑

𝑗=1 
𝛽𝑗 = 1, 𝛽𝑗 ≥ 0,

𝑥 =
𝑠 ∑
𝑖=1 

𝛼𝑖𝑥𝑖, 𝑦 =
𝑡 ∑

𝑗=1 
𝛽𝑗𝑦𝑗 ,

𝑧1 ≥𝑅
𝖳
𝑖 𝑦 for all 𝑖,

𝑧2 ≥ 𝑥
𝖳𝐶𝑗 for all 𝑗,

𝑤 ≥ 𝑧1 − 𝑥𝖳𝑅𝑦, 𝑤 ≥ 𝑧2 − 𝑥𝖳𝐶𝑦.

As a QCQP, the optimal mixing problem is an optimization problem. By using the KKT conditions, the optimization problem can 
be reduced to a system of polynomial equations and inequalities:

𝑓𝑖(𝑥1,… , 𝑥𝑠, 𝑦1,… , 𝑦𝑡) = 0, 𝑖 = 1,… ,

𝑔𝑗 (𝑥1,… , 𝑥𝑠, 𝑦1,… , 𝑦𝑡) ≤ 0, 𝑗 = 1,… ,

where 𝑓𝑖 and 𝑔𝑗 are polynomials. The exact optimal mixing problem is to find a solution to this system of polynomial equations and 
inequalities. Such a system is called an algebraic variety in the context of algebraic geometry. Thus, the exact solution is an element 
belonging to an algebraic variety.

For the case of (2,3), this paper shows that the solution can be reduced to a solution of a univariate quintic equation, which can 
be solved radically. However, for the case of (3,3), it is not even clear how to reduce the problem to a univariate equation. This 
phenomenon is not unique in NE computation. For example, the exact NE of a 3-player game is also an algebraic variety, and it is 
still not clear how to solve it using a Turing machine [43].

The difficulties in studying the exact optimal mixing problem or NE lie essentially in the real algebraic nature of the problem. In 
computability theory, the Blum-Shub-Smale machine [44], or BSS machine, is a model of computation intended to describe compu-

tations over the real numbers. Indeed, using the BSS machine, it is possible to solve the optimal mixing problem. However, the BSS 
machine surpasses the computability of the Turing machine, as it can represent uncountable sets, while the Turing machine can only 
represent countable sets. Thus, the exact optimal mixing problem is probably not computable by a Turing machine.

6.2. Future directions

This work also brings up several open questions:
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• How does the existence of NE benefit the computation of NE? In Table 1, the upper bound of approximate NE under restrictions 
is far greater than the upper bound of approximate NE without restrictions. This suggests that the existence of NE is crucial for 
the computation of approximate NE. The optimal mixing problem provides a new methodology to study the computational 
complexity of approximate NE without the existence guarantee. We hope it can be used to understand the benefit of the NE 
existence to approximate NE computation.

• How to distinguish the optimization problem, function problem, and the decision problem of approximate NE? Note that 
the literature of approximate and exact NE is composed of three parts: the optimization problem, the function problem, and the 
decision problem. Their relations are very intricate but important in understanding the underlying structure of NE computation. 
However, such differences are often ignored in the literature. Thus, it is important to distinguish them and understand their 
relations.

• What is the relationship between approximate NE and QCQP? In our optimization perspective, the approximate NE com-

putation problem is a special case of the quadratically constrained quadratic program (QCQP) problem. We utilize the QCQP 
structure to develop algorithms for the optimal mixing problem. On the other hand, QCQP is known to be NP-hard [45] and has 
no constant approximation algorithm unless NP = P [46], while the constant approximate NE computation has quasi-polynomial 
time algorithms. It suggests that there is some interesting connection between the approximate NE computation and a subclass 
of QCQP problem.

• How to extend our approach to compute approximate NE with other restrictions? Note that the core component of our 
approach is the utilization of the bilinear structure of 𝑓 and grid covering. Thus, by writing other approximate NE restrictions, 
like maximum social welfare, as optimization problems with bilinear term, we can extend our approach to compute approximate 
NE with other restrictions.
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Appendix A. Missing proofs and algorithms

A.1. Proof of Lemma 3.1

In case 1, take any 𝑥 ∈ 𝑆 . Then 𝑔2(𝑥) ≤𝑀2 ≤ 𝑚1 ≤ 𝑔1(𝑥). Therefore, min𝑆 𝑔(𝑥) = min𝑆 𝑔1(𝑥) = 𝑚1. The minimum is obtained 
exactly in {𝑥 ∈ 𝑆 ∶ 𝑔1(𝑥) =𝑚1}, namely 𝑔−11 (𝑚1).

Case 2 is symmetric to case 1, so we omit it.
For case 3, we consider which set function 𝑔 reaches the minimum. Suppose that 𝑥 is a minimum, and 𝑔1(𝑥) ≠ 𝑔2(𝑥), then suppose 

without loss of generality that 𝑔1(𝑥) > 𝑔2(𝑥). By the continuity of 𝑔1, 𝑔2, 𝑔1 > 𝑔2 in some neighborhood of 𝑥. Therefore, 𝑔 = 𝑔1 in this 
neighborhood, so 𝑥 must be a local minimum for 𝑔1 . The problem becomes solving the first-order condition for optimization with 
linear constraints. Thus 𝑥 must also be a KKT point of 𝑔1 and satisfy the KKT condition given in the statement.

A.2. Proof of Proposition 3.1

We prove the statement in the order of 1, 2, 3, 5, 4, and 6.

Proof of Statement 1 and 2. For statement 1, we note that notation dim(𝑆) = 𝑚 means that the smallest affine space containing it 
has dimension 𝑚. Therefore, the space can be expressed by the solution of (𝑛−𝑚) linear equations, say 𝑢𝖳

𝑖
𝑥 = 𝑣𝑖, 𝑖 ∈ [𝑛−𝑚]. Moreover, 

the remaining constraints cannot contain any equation like 𝑢𝖳𝑥 = 𝑣; otherwise, dim(𝑆) ≤ 𝑚− 1, which violates the definition of the 
affine hull.

For statement 2, by the definition of parallel, 𝑑 ∥ 𝑆 if and only if there exists a line segment defined by 𝑥0, 𝑥1 ∈ 𝑆 such that 
𝑥1 = 𝑥0 + 𝛿𝑑, where 𝛿 is a nonzero constant. Since 𝑥0, 𝑥1 ∈ 𝑆 , we have for every 𝑖 ∈ [𝑛 − 𝑚], 𝑢𝖳

𝑖
𝑥0 = 𝑣𝑖 and 𝑢𝖳

𝑖
(𝑥0 + 𝛿𝑑) = 𝑣𝑖, so 

𝑢𝖳
𝑖
𝑑 = 0. □
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To prove statements 3, 5 and 4, we need the representation theorem for polytopes. We say a halfspace (inequality) 𝑎𝖳𝑥 ≤ 𝑏 is 
facet-defining (for polytope 𝑃 ) if 𝑃 ∩ {𝑥 ∈ℝ𝑛 ∶ 𝑎𝖳𝑥 ≥ 𝑏} defines a facet of 𝑃 .

Theorem A.1 (Representation theorem for polytopes, Theorem 2.15 in [41]). A subset 𝑃 ⊆ℝ𝑛 is a polytope if and only if it can be described 
as a bounded intersection of facet-defining halfspaces, one for each facet, and of the affine hull of 𝑃 . Moreover, the facet-defining inequalities 
are uniquely determined (if we write them as 𝑎𝖳

𝑖
𝑥 ≤ 1), and none of them can be deleted.

Proof of Statement 3 and 5. By Theorem A.1, we can write 𝑆 in the form

aff(𝑆) ∩
⋂
𝑖∈�̃�

{
𝑥 ∈ℝ𝑛 ∶ �̃�𝖳𝑖 𝑥 ≤ 1

}
.

Here, inequalities �̃�𝖳
𝑖
𝑥 ≤ 1 are facet-defining. Since they are unique and cannot be deleted, each inequality �̃�𝖳

𝑖
𝑥 ≤ 1 corresponds to 

a constraint 𝑎𝖳
𝑗
𝑥 ≤ 𝑏𝑗 with 𝑎𝑗 = 𝑏𝑗 �̃�𝑖. For each 𝑖 ∈ �̃� , pick such a 𝑗. Then we have already selected an index subset 𝑊 of [𝑘]. By 

statement 1, aff(𝑆) can be written in the form of 
{
𝑥 ∈ℝ𝑛 ∶ 𝑢𝖳

𝑖
𝑥 = 𝑣𝑖,∀𝑖 ∈ [𝑛−𝑚]

}
. Now we have proved statement 3.

For statement 5, since constraint 𝑎𝖳
𝑗
𝑥 ≤ 𝑏𝑗 , 𝑗 ∈𝑊 is fact-defining, again by Theorem A.1, 𝑆′

𝑗
= aff(𝑆) ∩

{
𝑥 ∈ℝ𝑛 ∶ 𝑎𝖳

𝑗
𝑥 ≤ 𝑏𝑗

}
exactly represents a facet and vice versa. □

Now we prove statement 4.

Proof of statement 4. We first prove that

𝑆1 ∶=
{
𝑥 ∈ 𝑆 ∶ ∀𝑘 ∈𝑊 ,𝑎𝖳

𝑘
𝑥 < 𝑏𝑘

}
⊆ 𝑆◦.

Pick 𝑥 ∈ 𝑆1. By the continuity of 𝑎𝖳
𝑘
𝑥, there exists a small neighborhood 𝑈 of 𝑥 such that 𝑈 ∩𝑆 ⊆ 𝑆1. Therefore, 𝑥 is an interior point 

of 𝑆 . Since 𝑥 is arbitrary, 𝑆1 ⊆ 𝑆
◦ holds.

Second, we show that

𝑆2 ∶=
{
𝑥 ∈ 𝑆 ∶ ∃𝑘 ∈𝑊 ,𝑎𝖳

𝑘
𝑥 = 𝑏𝑘

}
⊆ 𝜕𝑆.

Note that by the construction of statement 3, all constraints indexed in 𝑊 in 𝑆 can not be deleted. It then guarantees that for every 
𝑘 ∈𝑊 , there exists 𝑥0 ∈ ℝ𝑛 ⧵ 𝑆 such that 𝑎𝖳

𝑘
𝑥0 > 𝑏𝑘 and 𝑎𝖳

𝑗
𝑥0 ≤ 𝑏𝑗 holds for each 𝑗 ∈𝑊 ⧵ {𝑘}. Suppose 𝑥1 ∈ 𝑆2. Then 𝑎𝖳

𝑘
𝑥1 = 𝑏𝑘

for some 𝑘 ∈𝑊 . Consider the direction 𝑑 = 𝑥0 − 𝑥1. Notice that the set 
{
𝑥 ∈ℝ𝑛 ∶ 𝑎𝖳

𝑘
𝑥 ≥ 𝑏𝑘 and ∀𝑗 ∈𝑊 ⧵ {𝑘}, 𝑎𝖳

𝑗
𝑥 ≤ 𝑏𝑗

}
is convex. 

Since 𝑥1, 𝑥0 are both in it, the line segment defined by 𝑥1, 𝑥0 also lies in it. Therefore, for arbitrarily small 𝜖 > 0,

𝑎𝖳
𝑘

(
𝑥1 + 𝜖(𝑥0 − 𝑥1)

)
= (1 − 𝜖) 𝑎𝖳

𝑘
𝑥1

⏟ ⏟ ⏟
=𝑏𝑘

+𝜖 𝑎𝖳
𝑘
𝑥0

⏟ ⏟ ⏟
>𝑏𝑘

> 𝑏𝑘.

Hence 𝑥1 + 𝜖(𝑥0 − 𝑥1) ∉ 𝑆 and thus 𝑥1 ∈ 𝜕𝑆 . Since 𝑥1 is arbitrary, 𝑆2 ⊂ 𝜕𝑆 holds.

Now we combine these two results. Clearly 𝑆1 ∩𝑆2 = ∅ and 𝑆1 ∪𝑆2 = 𝑆 = 𝜕𝑆 ∪𝑆◦. So we must have 𝑆1 = 𝑆◦ and 𝑆2 = 𝜕𝑆 . □

Finally, statement 6 is the direct corollary of a result on face lattice.

Definition A.1. A graded lattice is a finite partially ordered set (𝑆,≤) if it shares all the following properties.

• It has a unique minimal element 0̂ and a unique maximal element 1̂.

• Every maximal chain has the same length.

• Every two elements 𝑥, 𝑦 ∈ 𝑆 have a unique minimal upper bound in 𝑆 , called the join 𝑥∨ 𝑦, and every two elements 𝑥, 𝑦 ∈ 𝑆 have 
a unique maximal lower bound in 𝑆 , called the meet 𝑥 ∧ 𝑦.

For a graded lattice, the minimal elements of 𝑆 ⧵ 0̂ are called atoms, and the maximal elements of 𝑆 ⧵ 1̂ are called coatoms.

A lattice is atomic if every element is a join 𝑥 = 𝑎1 ∨⋯ ∨ 𝑎𝑘 of 𝑘 ≥ 0 of atoms. Similarly, a lattice is coatomic if every element is a 
meet of coatoms.

Theorem A.2 (Proposition 2.3 and Theorem 2.7 in [41]). Let 𝑃 be a convex polytope. Consider the set of all faces 𝐿(𝑃 ), partially ordered 
by inclusion.

1. Set 𝐿(𝑃 ) is a graded lattice of length dim(𝑃 ) + 1. The meet operation is exactly the intersection of sets.
2. The face lattice 𝐿(𝑃 ) is both atomic and coatomic.

3. The faces of 𝐹 are exactly the faces of 𝑃 that are contained in 𝐹 .
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Proof of statement 6. By Theorem A.2, 𝐿(𝑆) is a graded lattice. Suppose 𝐹 is a face in 𝐿(𝑆). Then since 𝐿(𝑆) is coatomic, 𝐹 is the 
meet (i.e., intersection) of coatoms, i.e., facets. □

A.3. Proof of Corollary 3.1

We prove the corollary by discussing all possible cases that achieve the minimum. Since 𝑔(𝑥) = max{𝑔1(𝑥), 𝑔2(𝑥)}, we partition 
the domain into three parts according to whether 𝑔1(𝑥) is greater than, smaller than or equal to 𝑔2(𝑥).

Proof of Statement 1. By symmetry, we only need to consider the case of

𝑆1 ∶=
{
𝑥 ∈ 𝑆 ∶ 𝑔1(𝑥) > 𝑔2(𝑥),∃𝜆 ≥ 0,∇𝑔1(𝑥) + 𝜆𝖳𝑈 = 0 and ∀𝑖 ∈ [𝑚], 𝜆𝑖(𝑈𝑖𝑥− 𝑉𝑖) = 0

}
.

It suffices to show that for every 𝑥 ∈ 𝑆1, either ∇𝑔1(𝑥) = 0 or 𝑥 ∈ 𝜕𝑆 .

For a given 𝑥 ∈ 𝑆1, if ∇𝑔1(𝑥) = 0, then 𝜆 = 0 is a solution for the KKT conditions given in Theorem 12.1 in [40]. Otherwise, 
since ∇𝑔1(𝑥) = −𝜆𝖳𝑈 ≠ 0, there must exist 𝑖 such that 𝜆𝑖 ≠ 0. Therefore, we must have 𝑈𝑖𝑥 = 𝑉𝑖. By definition, every 𝑥 ∈ 𝑆 satisfies 
𝑈𝑖𝑥 ≤ 𝑉𝑖. By our assumption on 𝑈 , 𝑈𝑖 ≠ 0. So there is a vector 𝑑 ∈ ℝ𝑛 such that 𝑈𝑖𝑑 > 0. For any 𝜖 > 0, 𝑈𝑖(𝑥 + 𝜖𝑑) > 𝑉𝑖. Hence 
𝑥+ 𝜖𝑑 ∉ 𝑆 , i.e., 𝑥 ∈ 𝜕𝑆 . □

To prove the rest statements, we need the following claim.

Claim A.1. For any face 𝑇 of 𝑆 , if 𝑇 is parallel to 𝑒𝑖, we have: for any 𝑥∈ 𝑇 ∩𝑆1, if the minimum of 𝑓 can be obtained at 𝑥, then either 𝑥
is contained in a facet not parallel to 𝑒𝑖 or 𝜕𝑔1(𝑥)∕𝜕𝑥𝑖 = 0.

Proof. Since 𝑥 ∈ 𝑆1, by the KKT condition given in 𝑆1, there exists 𝜆 such that ∇𝑔1(𝑥) = −𝜆𝖳𝑈 . Thus 𝜕𝑔1(𝑥)∕𝜕𝑥𝑖 = ∇𝑔1(𝑥)𝖳𝑒𝑖 =
−𝜆𝖳𝑈𝑒𝑖. Note that by the definition of parallel, there exists a line 𝑙 such that 𝑙 ⊆ aff(𝑇 ) and 𝑙 ∥ 𝑒𝑖. Therefore, for any 𝑥 ∈ 𝑇 , there 
exists a line 𝑙𝑥 ⊆ aff(𝑇 ) such that 𝑥 ∈ 𝑙𝑥 and 𝑙𝑥 ∥ 𝑒𝑖. Define 𝑙𝑥 ∶= 𝑙𝑥 ∩ 𝑇 .

If 𝑥 is not an endpoint of the line segment 𝑙𝑥 , then ±𝑒𝑖 are both feasible directions for 𝑥, namely for any sufficiently small 𝜖 > 0, 
𝑥± 𝜖𝑒𝑖 ∈ 𝑇 . We show that in this case, 𝑥 must satisfy 𝜕𝑔1(𝑥)∕𝜕𝑥𝑖 = 0. The KKT condition implies that for any 𝑗 ∈ [𝑛], we either have 
𝜆𝑗 = 0 or 𝑈𝑗𝑥 = 𝑉𝑗 . If 𝑈𝑗𝑥 = 𝑉𝑗 , since 𝑥± 𝜖𝑒𝑖 ∈ 𝑆 , 𝑈𝑗 (𝑥± 𝜖𝑒𝑖) ≤ 𝑉𝑗 =𝑈𝑗𝑥, which means 𝑈𝑗𝑒𝑖 = 0. Therefore, either 𝜆𝑗 = 0 or 𝑈𝑗𝑒𝑖 = 0, 
we have 𝜆𝖳𝑈𝑒𝑖 =

∑
𝑗 𝜆𝑗𝑈𝑗𝑒𝑖 = 0. Thus 𝜕𝑔1(𝑥)∕𝜕𝑥𝑖 = −𝜆𝖳𝑈𝑒𝑖 = 0 as desired.

To finish our proof, it suffices to show that if 𝑥 ∈ 𝑆1 ∩ 𝑇 is an endpoint of 𝑙𝑥, then either 𝑥 is contained in a facet 𝑁 of 𝑆 not 
parallel to 𝑒𝑖 or 𝜕𝑔1(𝑥)∕𝜕𝑥𝑖 = 0. We prove it by induction on dim(𝑇 ).

Suppose dim(𝑇 ) = 1. By the definition of polytopes, 𝑇 must be a one-dimensional bounded and closed convex set, i.e., a line 
segment. In this case, 𝑒𝑖 ∥ 𝑇 , so for any 𝑥0 ∈ 𝑇 , 𝑙𝑥0 is exactly 𝑇 . Thus, 𝑥0 is the endpoint of 𝑙𝑥0 if and only if {𝑥0} is a face of 𝑇 . 
By Theorem A.2, {𝑥0} is a face of 𝑆 . Then by statement 6 in Proposition 3.1, {𝑥0} is the intersection of several facets of 𝑆 . Since 
𝑆 =

{
𝑥 ∈ℝ𝑛 ∶𝑈𝖳

𝑖
𝑥 ≤ 𝑉𝑖, 𝑖 ∈ [𝑚]

}
, by statement 5 in Proposition 3.1, the facets of 𝑆 can be expressed as 𝑆′

𝑖
=

{
𝑥 ∈ 𝑆 ∶𝑈𝖳

𝑖
𝑥 = 𝑉𝑖

}
, 

𝑖 ∈ 𝑊 for some index subset 𝑊 . Thus there exists a nonempty subset of 𝑊 , denoted by 𝐼 , such that {𝑥0} =
⋂
𝑖∈𝐼 𝑆

′
𝑖

and 
𝑥0 ∉ 𝑆′

𝑗
for every 𝑗 ∈ 𝑊 ⧵ 𝐼 . Note that by assumption dim(𝑆) = 𝑛, we have aff(𝑆) = ℝ𝑛. By statement 3 in Proposition 3.1, 

𝑆 =
{
𝑥 ∈ℝ𝑛 ∶𝑈𝖳

𝑖
𝑥 ≤ 𝑉𝑖,∀𝑖 ∈𝑊

}
. Then we have

{𝑥0} =
⋂
𝑖∈𝐼

𝑆′
𝑖

=
⋂
𝑖∈𝐼

(
𝑆 ∩

{
𝑥 ∈ℝ𝑛 ∶𝑈𝖳

𝑖 𝑥 = 𝑉𝑖
})

=𝑆 ∩
⋂
𝑖∈𝐼

({
𝑥 ∈ℝ𝑛 ∶𝑈𝖳

𝑖 𝑥 = 𝑉𝑖
})

=
{
𝑥 ∈ℝ𝑛 ∶𝑈𝖳

𝑖 𝑥 = 𝑉𝑖, 𝑖 ∈ 𝐼,𝑈
𝖳
𝑗 𝑥 < 𝑉𝑗 , 𝑗 ∈𝑊 ⧵ 𝐼

}
.

Now we show that there exists a facet 𝑆′
𝑖
, 𝑖 ∈ 𝐼 not parallel to 𝑒𝑖. Suppose on the contrary that for any 𝑖 ∈ 𝐼 , 𝑆′

𝑖
is parallel to 𝑒𝑖, 

then we have 𝑈𝖳
𝑖
𝑒𝑖 = 0 by the definition of parallel. Thus for any 𝑘 ∈ ℝ, we have 𝑈𝖳

𝑖
(𝑥0 + 𝑘𝑒𝑖) = 𝑉𝑖 for every 𝑖 ∈ 𝐼 . Note that by 

continuity there exists a sufficiently small 𝜖 > 0 such that for every 𝑗 ∈𝑊 ⧵ 𝐼 , 𝑈𝖳
𝑗
(𝑥 + 𝜖𝑒𝑖) < 𝑉𝑗 . Thus 𝑥0 + 𝜖𝑒𝑖 is also contained in 

the set 
{
𝑥 ∈ℝ𝑛 ∶𝑈𝖳

𝑖
𝑥 = 𝑉𝑖, 𝑖 ∈ 𝐼,𝑈𝖳

𝑗
𝑥 < 𝑉𝑗 , 𝑗 ∈𝑊 ⧵ 𝐼

}
= {𝑥0}, a contradiction. So we finish the proof of the case dim(𝑇 ) = 1.

Now we suppose that the result holds on every ℎ-dimensional face with ℎ =𝑚− 1 ≤ 𝑛− 1, and let dim(𝑇 ) =𝑚. Note that for any 
𝑥 ∈ 𝑇 ◦, there exists 𝜖 > 0 such that every 𝑑 ∥ aff(𝑇 ) satisfies 𝑥 + 𝜖𝑑 ∈ 𝑇 . So 𝑥 must be an interior point of 𝑙𝑥 and thus not be an 
endpoint of 𝑙𝑥. We have assumed that 𝑥 is the endpoint of 𝑙𝑥, so this is not the case. We must have 𝑥 ∈ 𝜕𝑇 . By statement 4 and 5 in 
Proposition 3.1, 𝑥 must be contained in a face 𝑇 ′ ⊆ 𝜕𝑇 of 𝑇 with dim(𝑇 ′) =𝑚− 1. By Theorem A.2, 𝑇 ′ is also a face of 𝑆 . If 𝑇 ′ ∥ 𝑒𝑖, 
then line 𝑙𝑥 ⊆ aff(𝑇 ′) with 𝑥 ∈ 𝑙𝑥. Let 𝑙′𝑥 = 𝑙𝑥 ∩𝑇

′. By the same argument, 𝑙′𝑥 is a line segment. If 𝑥 is not an endpoint of this segment, 
then we have proved that 𝜕𝑔1(𝑥)∕𝜕𝑥𝑖 = 0 as desired. If 𝑥 is an endpoint, then by the induction hypothesis either 𝑥 is contained in 
a facet 𝑁 of 𝑆 not parallel to 𝑒𝑖 or 𝜕𝑔1(𝑥)∕𝜕𝑥𝑖 = 0. Thus the induction holds. If face 𝑇 ′ is not parallel to 𝑒𝑖, then we show that 𝑇 ′



Theoretical Computer Science 1031 (2025) 115072

19

X. Deng, D. Li and H. Li 

is contained in some facet 𝑁 of 𝑆 not parallel to 𝑒𝑖. Note that since face 𝑇 ′ is not parallel to 𝑒𝑖, 𝑙𝑥 ∩ 𝑇 ′ = {𝑥}. If all facets 𝑆′ of 𝑆
containing 𝑇 ′ are parallel to 𝑒𝑖, by the same argument on the case of dim(𝑇 ) = 1, for sufficiently small 𝜖 > 0, 𝑥+ 𝜖𝑒𝑖 ∈ 𝑇 ′. However, 
clearly 𝑥+ 𝜖𝑒𝑖 ∈ 𝑙𝑥 and thus 𝑥+ 𝜖𝑒𝑖 ∈ 𝑙𝑥 ∩ 𝑇 ′, which leads to a contradiction. □

Now we can continue the main proof.

Proof of Statement 2. For statement 2, it suffices to show that for every 𝑥 ∈ 𝜕𝑆 ∩ 𝑆1, either 𝑥 ∈ 𝜕𝑆𝑁 or both 𝑥 ∈ 𝜕𝑆𝑃 and 
𝜕𝑔1(𝑥)∕𝜕𝑥𝑖 = 0 hold. Equivalently, we show that for every 𝑥 ∈ 𝑃 ∩ 𝑆1, where 𝑃 is a facet parallel to 𝑒𝑖, either there exists a facet 𝑁
which is not parallel to 𝑒𝑖 such that 𝑥 ∈𝑁 , or 𝜕𝑔1(𝑥)∕𝜕𝑥𝑖 = 0. This immediately follows by taking 𝑚 = 𝑛− 1 in Claim A.1. □

Proof of Statement 3. We first show that any face 𝑇 of 𝑆 must have the form

𝑇𝐼1 ,𝐼2 ∶=
∏
𝑖∈[𝑛]

𝑆𝑖.

Here, 𝑆𝑖 = {𝑚𝑖} for every 𝑖 ∈ 𝐼1, 𝑆𝑖 = {𝑀𝑖} for every 𝑖 ∈ 𝐼2 and 𝑆𝑖 = [𝑚𝑖,𝑀𝑖] for every 𝑖 ∈ [𝑛] ⧵ (𝐼1 ∪ 𝐼2), where 𝐼1, 𝐼2 ⊆ [𝑛] and 
𝐼1 ∩ 𝐼2 = ∅.

By applying statement 3 in Proposition 3.1, 𝑆 can be written into {𝑥 ∈ℝ𝑛 ∶ 𝑥𝑖 ≤𝑀𝑖,−𝑥𝑖 ≤ −𝑚𝑖,∀𝑖 ∈ [𝑛]}. Therefore, by statement 
5 in Proposition 3.1, the facets of 𝑆 are given by 𝑆 ∩{𝑥 ∈ℝ𝑛 ∶ 𝑥𝑖 =𝑚𝑖} or 𝑆 ∩{𝑥 ∈ℝ𝑛 ∶ 𝑥𝑖 =𝑀𝑖}. By statement 6 in Proposition 3.1, 
any face 𝑇 of 𝑆 can be expressed as the intersection of several facets. Thus there exist index subsets 𝐼1, 𝐼2 such that

𝑇 = 𝑆 ∩
⋂
𝑖∈𝐼1

{𝑥 ∈ℝ𝑛 ∶ 𝑥𝑖 =𝑚𝑖} ∩
⋂
𝑖∈𝐼2

{𝑥 ∈ℝ𝑛 ∶ 𝑥𝑖 =𝑀𝑖}.

If 𝐼1 ∩ 𝐼2 = ∅, then exactly 𝑇 = 𝑇𝐼1 ,𝐼2 ; otherwise, if 𝑖 ∈ 𝐼1 ∩ 𝐼2, by 𝑚𝑖 ≠𝑀𝑖, 𝑇 = ∅. Now, it suffices to show that any 𝑇𝐼1 ,𝐼2 is a 
face of 𝑆 . For any 𝑇𝐼1,𝐼2 , consider 𝑎 = −

∑
𝑖∈𝐼1 𝑒𝑖 +

∑
𝑖∈𝐼2 𝑒𝑖, 𝑏 = −

∑
𝑖∈𝐼1 𝑚𝑖 +

∑
𝑖∈𝐼2 𝑀𝑖. On the one hand, for any 𝑥 ∈ 𝑆 , we have 

𝑚𝑖 ≤ 𝑥𝖳𝑒𝑖 = 𝑥𝑖 ≤𝑀𝑖, so 𝑎𝖳𝑥 =
∑
𝑖∈𝐼1 (−𝑥𝑖) +

∑
𝑖∈𝐼2 𝑥𝑖 ≤ −

∑
𝑖∈𝐼1 𝑚𝑖 +

∑
𝑖∈𝐼2 𝑀𝑖 = 𝑏. On the other hand, we can see that the equality 

holds if and only if 𝑥𝑖 = 𝑚𝑖 for every 𝑖 ∈ 𝐼1 and 𝑥𝑖 =𝑀𝑖 for every 𝑖 ∈ 𝐼2. This set is exactly given by 𝑇𝐼1 ,𝐼2 , so 𝑇𝐼1,𝐼2 is the face of 𝑆
determined by 𝑎, 𝑏, and we finish our proof.

With the clear description of all the faces of 𝑆 by 𝑇𝐼1,𝐼2 , we can easily see that a face 𝑇𝐼1 ,𝐼2 is a single point if and only if 
𝐼1 ∪ 𝐼2 = [𝑛]. Also, for any face 𝑇 that is not a single point, there exists 𝑖 ∈ [𝑛] such that 𝑖 ∉ 𝐼1 ∪ 𝐼2. So, for any 𝑦 = (𝑦1, ..., 𝑦𝑛)
in 𝑇 , 

∏
𝑗≠𝑖{𝑦𝑗} × [𝑚𝑖,𝑀𝑖] ⊆ 𝑇 , which defines a line from (𝑦1,… , 𝑦𝑖−1,𝑚𝑖, 𝑦𝑖+1,… , 𝑦𝑛) to (𝑦1,… , 𝑦𝑖−1,𝑀𝑖, 𝑦𝑖+1,… , 𝑦𝑛) parallel to 𝑒𝑖. 

Therefore, by the definition of parallel, 𝑒𝑖 ∥ 𝑇 . So every face 𝑇 of 𝑆 is parallel to some 𝑒𝑖.
Suppose 𝑥∈ 𝜕𝑆 . We show that either 𝑥 is a single point face, or 𝑥 belongs to the interior of some face 𝑇 parallel to some 𝑒𝑖. Note 

that 𝑥 must belong to some face 𝑇 of 𝑆 . We prove it by induction on the dimension of 𝑇 . When dim(𝑇 ) = 0, 𝑇 = {𝑥} is a single point 
face. For dim(𝑇 ) = 𝑛, we only need to consider the case that 𝑥 ∉ 𝑇 ◦. Immediately, 𝑥 ∈ 𝜕𝑇 , so by Proposition 3.1 and Theorem A.2, 𝑥
belongs to some face of 𝑆 with lower dimension. The result then follows by the induction hypothesis.

Thus, either 𝑥 is a single point face given by 
{
𝑥 ∈ℝ𝑛 ∶ ∀𝑖, 𝑥𝑖 ∈

{
𝑚𝑖,𝑀𝑖

}}
, or 𝑥 belongs to the interior of a face 𝑇 parallel to some 

𝑒𝑖. We now apply the result in Claim A.1. Suppose 𝑥 is not a single point face that attains the minimum of 𝑓 . If 𝑔1(𝑥) > 𝑔2(𝑥), then 
𝜕𝑔1(𝑥)∕𝜕𝑥𝑖 = 0; if 𝑔1(𝑥) < 𝑔2(𝑥), then 𝜕𝑔2(𝑥)∕𝜕𝑥𝑖 = 0. So, 𝑥 must be contained in the set 𝑆+ given in this statement. □

A.4. The (2,𝑚)-separation algorithm

This problem can be restated as a famous problem in computational geometry called envelope problem, which is a special case of 
half-plane intersection problem. The half-plane intersection problem can be solved with the plane sweep method in time 𝑂(𝑛 log𝑛) with 
𝑛 breakpoints, see, e.g., Section 4.2 of [33]. For completeness, we restate the full algorithm here.

Specifically, suppose we are given two series {𝑎𝑖}𝑘𝑖=1,{𝑏𝑖}
𝑘
𝑖=1. We want to compute the breakpoints of function ℎ(𝑥) =

max𝑖∈[𝑘]{𝑎𝑖𝑥 + 𝑏𝑖} in the interval [0,1] and the value of ℎ on these points. We present a method based on ideas from computa-

tional geometry.

First, we turn the case into 𝑎1 < 𝑎2 < ... < 𝑎𝑘. To do so, reorder functions {𝑎𝑖𝑥+ 𝑏𝑖}𝑖 so that 𝑎1 ≤ 𝑎2 ≤ ... ≤ 𝑎𝑘. Then we check all 
contiguous pairs (𝑎𝑖, 𝑎𝑖+1). If 𝑎𝑖 = 𝑎𝑖+1, then we delete the function with smaller 𝑏𝑖, since it is strictly smaller than the other one. By 
this procedure, we obtain 𝑎1 < 𝑎2 < ... < 𝑎𝑘 in time 𝑂(𝑘 log𝑘).

Let us use a list 𝑤 to memorize the breakpoints and a list 𝑡 to memorize the value of ℎ(𝑥) on these points. Define ℎ𝑠(𝑥) =
max𝑖∈[𝑠]{𝑎𝑖𝑥 + 𝑏𝑖}. We use a recursion method to find the breakpoints by gradually updating the set of breakpoints from ℎ1(𝑥) to 
ℎ𝑘(𝑥) = ℎ(𝑥). For the beginning, since ℎ1(𝑥) = 𝑎1𝑥+ 𝑏1, we can initialize list 𝑤 with 𝑤(0) = 0,𝑤(1) = 1 and list 𝑡 with 𝑡(0) = 𝑏1, 𝑡(1) =
𝑎1 + 𝑏1. Then we consider how to update from ℎ𝑠(𝑥) to ℎ𝑠+1(𝑥).

By assumption 𝑎1 < 𝑎2 < ... < 𝑎𝑠 < 𝑎𝑠+1, function Δℎ𝑠(𝑥) = ℎ𝑠(𝑥) − 𝑎𝑠+1𝑥 − 𝑏𝑠+1 is continuous on [0,1] and decreasing on every 
linear piece. So Δℎ𝑠 is decreasing on [0,1] and has at most one zero point. Therefore, ℎ𝑠(𝑥) has at most one intersection point with 
𝑎𝑠+1𝑥 + 𝑏𝑠+1. If such point exists, say 𝑥∗, then we have ℎ𝑠(𝑥) ≤ 𝑎𝑠+1𝑥 + 𝑏𝑠+1 if and only if 𝑥 ≥ 𝑥∗. So, we only need to add 𝑥∗ into 
list 𝑤 and delete all the points in list 𝑤 which belong to [𝑥∗,1). Similarly, we add 𝑎𝑠+1𝑥∗ + 𝑏𝑠+1 into the list 𝑡, update the value 
corresponding to 1 with 𝑎𝑠+1 + 𝑏𝑠+1 and delete all values between them. The geometric illustration of such a procedure is given in 
Fig. A.4. 
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Fig. A.4. Illustration of the update procedure from ℎ3 (orange line on the left) to ℎ4 (orange line on the right). We try to add term 𝑎3𝑥+ 𝑏3 (dashed line on the left) 
into the max operator in ℎ3 . 𝑎4𝑥+ 𝑏4 intersects ℎ3 at 𝑎2𝑥+ 𝑏2 . Thus 𝑥∗ (yellow dot) is calculated and the breakpoints larger than 𝑥∗ are deleted. Equivalently, 𝑎3𝑥+ 𝑏3
is removed (dashed line on the right).

Fig. A.5. Illustration of the procedure computing ordered vertices (vertical line cases). On the left, the lower semi-boundary and the upper one is colored with green 
and orange, respectively. The vertices are labeled clockwise on each semi-boundary. On the right, we try to add vertical lines. The black dashed line does not change 
the structure at all, so it is omitted. The black solid line will change the structure, and the new labels of vertices are computed (and in the bracket is the original 
labels).

To find such 𝑥∗, we use a binary search on index 𝑡 to locate the proper line 𝑎𝑡𝑥 + 𝑏𝑡 forming the intersection point 𝑥∗. Such a 
search costs only logarithm time of the number of lines.

Now we analyze the time complexity of this algorithm. There are in total 𝑘 rounds of binary searches, with the 𝑖th round using time 
𝑂(log 𝑖). In total, the time complexity is 𝑂

(∑𝑘
𝑖=1 log 𝑖

)
=𝑂(𝑘 log𝑘). We collect the above arguments into the following proposition.

Proposition A.1. There exists an algorithm that outputs all the breakpoints of ℎ(𝑥) and their corresponding function values in time 𝑂(𝑘 log𝑘).

A.5. The (3,𝑚)-separation algorithm

Note that since 𝑡 = 3, 𝛽 can be represented by two free variables, i.e., 𝛽 = (𝑥, 𝑦,1 − 𝑥− 𝑦). Then the polytope 𝑃𝑖 in Definition 3.2

is actually a polygon on the plane. The (3,𝑚)-separation algorithm needs to find a clockwise enumeration of vertices of 𝑃𝑖 . This 
problem, again, can be stated by the half-plane intersection. For completeness, we present the algorithm here.

In fact, a proper application of the (2,𝑚)-separation algorithm will give us the desired algorithm. A key observation is that the 
boundary of a polygon can be expressed as a union of four parts: left boundary, right boundary, upper semi-boundary and lower 
semi-boundary. If we write all constraints of 𝑃𝑖 in the form 𝑙𝑗 ∶= �̃�𝑗𝑥 + �̃�𝑗𝑦 + 𝑐𝑗 ≥ 0, 𝑗 ∈ [𝑘], then each constraint belongs to exactly 
one part of the boundary:

1. When �̃�𝑗 = 0, 𝑙𝑗 = 0 is a candidate of the left (right) boundary if �̃�𝑗 > 0 (< 0).

2. When �̃�𝑗 ≠ 0, 𝑙𝑗 = 0 is a candidate of the upper (lower) semi-boundary if �̃�𝑗 < 0 (> 0).

In the second case, we write the boundary into the form 𝑦 = �̃�𝑥 + �̃�. Then we can apply Proposition A.1 on the upper (lower) semi-

boundary to obtain ordered vertices in time 𝑂(𝑘 log𝑘). Next, we combine the two semi-boundaries to obtain the leftmost and rightmost 
vertices.

Now we determine the vertical boundaries. The left (right) boundary, if exists, has the maximum (minimum) −𝑐𝑗∕�̃�𝑗 , which can 
be found in 𝑂(𝑘) time. If the left (right) boundary does not rule out the leftmost (rightmost) vertex, then there is no left (right) 
boundary. Otherwise, by a binary search on vertices of the two semi-boundaries, we can find two segments adjacent to the left (right) 
boundary in 𝑂(log𝑘) time. An illustration of this procedure is presented in Fig. A.5. 

We collect the above arguments into the following proposition.

Proposition A.2. There exists an algorithm that outputs all vertices in a clockwise order of the polygon 𝑃𝑖 in time 𝑂(𝑘 log𝑘).

A.6. The optimal (2,2)-mixing algorithm

We first give some notations Let 𝐹𝑅(𝛼, 𝛽) = 𝑓𝑅(𝛼𝑥1 + (1 − 𝛼)𝑥2, 𝛽𝑦1 + (1 − 𝛽)𝑦2). Define 𝐹𝐶 (𝛼, 𝛽) similarly. Then let 𝐹 (𝛼, 𝛽) =
max{𝐹𝑅(𝛼, 𝛽), 𝐹𝐶 (𝛼, 𝛽)}. The goal of the optimal (2,2)-mixing algorithm is to calculate the minimum of 𝐹 on square  = [0,1]×[0,1]. 
Now we state the algorithm.
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Applying the (2,𝑚)-separation algorithm in Appendix A.4, we can construct a mesh grid of (𝛼, 𝛽) so that on each grid, both 𝐹𝑅
and 𝐹𝐶 are linear in 𝛼 and 𝛽 respectively. Then both 𝐹𝑅 and 𝐹𝐶 have the form 𝑥1 + 𝑥2𝛼 + 𝑥3𝛽 + 𝑥4𝛼𝛽, where 𝑥𝑖 ’s are constants 
determined by 𝐹𝑅 or 𝐹𝐶 values on four vertices of the grid. Our next step is then to give a method computing the minimum point of 
𝐹 (𝛼, 𝛽) on each grid.

On each grid, by statement 3 in Corollary 3.1, it suffices to minimize 𝐹 =max{𝐹𝑅,𝐹𝐶} over:

1. points with 𝜕𝐹𝑘(𝛼, 𝛽)∕𝜕𝛼 = 0 or 𝜕𝐹𝑘(𝛼, 𝛽)∕𝜕𝛽 = 0, 𝑘 ∈ {𝑅,𝐶},

2. the four vertices of the grid, and

3. points with 𝐹𝑅 = 𝐹𝐶 .

• (Case 1) Equations 𝜕𝐹𝑘(𝛼, 𝛽)∕𝜕𝛼 = 0 and 𝜕𝐹𝑘(𝛼, 𝛽)∕𝜕𝛽 = 0 have the form that 𝛼 or 𝛽 takes a fixed value.4 Hence the problem 
becomes computing the minimum of two univariate linear functions, which is easy to solve.

• (Case 2) We just need to enumerate the value of 𝐹 on the four vertices.

• (Case 3) By solving the equation 𝐹𝑅(𝛼, 𝛽) = 𝐹𝐶 (𝛼, 𝛽), we obtain an expression of 𝛽 given by a linear fraction of 𝛼. If the denominator 
linear function of 𝛼 is zero, then we can solve it just like in case 1. Otherwise, by substituting the expression of 𝛽 into the expression 
of 𝐹 = 𝐹𝑅, we convert this problem into finding the minimum of a function 𝑔(𝛼) with the form (𝑎2𝛼2 + 𝑎1𝛼 + 𝑎0)∕(𝑏1𝛼 + 𝑏0). This 
can be done by calculating its values at two boundary points and points with zero derivatives. Note that 𝑔′(𝛼) = 0 is equivalent to 
a quadratic equation in 𝛼, which has at most two solutions. So in this case we can test at most four points to find the minimum.

We collect the above arguments into the following proposition:

Proposition A.3. There exists an algorithm finding the minimum point of 𝐹 (𝛼, 𝛽) on any grid in 𝑂(1) time.

With these results above, we can efficiently calculate the minimum point of 𝑓 on each grid where both 𝐹𝑅 and 𝐹𝐶 are linear in 𝛼
and 𝛽 respectively. Note that the numbers of breakpoints of 𝛼 and 𝛽 are at most 𝑚 and 𝑛 respectively, so there are at most 𝑚𝑛 grids. 
On each grid the minimization procedure takes 𝑂(1) time, implying a total 𝑂(𝑚𝑛) time on . Thus time complexity of calculating 
the minimum of 𝑓 on  is 𝑂(max{𝑚,𝑛} logmax{𝑚,𝑛}) +𝑂(𝑚𝑛) =𝑂(𝑚𝑛). We summarize it as the following theorem.

Theorem A.3. Give any strategies 𝑥1, 𝑥2 ∈ Δ𝑚 and 𝑦1, 𝑦2 ∈ Δ𝑛, let

𝐹 (𝛼, 𝛽) = 𝑓 (𝛼𝑥1 + (1 − 𝛼)𝑥2, 𝛽𝑦1 + (1 − 𝛽)𝑦2), 𝛼, 𝛽 ∈ [0,1].

Then there exists an algorithm finding the minimum point of 𝐹 (𝛼, 𝛽) in time 𝑂(𝑚𝑛).

A.7. The optimal (2,3)-mixing algorithm

We begin by some notations. Let

𝐹𝑅(𝛼, 𝛽, 𝛾) =max{𝑅(𝛾𝑦1 + (1 − 𝛾)𝑦2)}−

(𝛼𝑥1 + 𝛽𝑥2 + (1 − 𝛼 − 𝛽)𝑥3)𝖳𝑅(𝛾𝑦1 + (1 − 𝛾)𝑦2),

𝐹𝐶 (𝛼, 𝛽, 𝛾) =max
{
𝐶𝖳(𝛼𝑥1 + 𝛽𝑥2 + (1 − 𝛼 − 𝛽)𝑥3)

}
−

(𝛼𝑥1 + 𝛽𝑥2 + (1 − 𝛼 − 𝛽)𝑥3)𝖳𝐶(𝛾𝑦1 + (1 − 𝛾)𝑦2).

Define 𝐹 (𝛼, 𝛽, 𝛾) = max{𝐹𝑅(𝛼, 𝛽, 𝛾), 𝐹𝐶 (𝛼, 𝛽, 𝛾)}. Then the algorithm in this part minimizes 𝐹 on the prism  = {(𝛼, 𝛽, 𝛾) ∈ [0,1]3 ∶
𝛼 + 𝛽 ≤ 1}.

Using (2,𝑚)-separation algorithm in Appendix A.4 and (2,𝑚)-separation algorithm in Appendix A.7, we can obtain the linear 
region5 of function 𝐹 . Our next step is then to minimize 𝐹 on each linear region, in which both 𝐹𝑅 and 𝐹𝐶 have form 𝑎0𝛼𝛾 + 𝑎1𝛽𝛾 +
𝑎2𝛾 + 𝑎3𝛼 + 𝑎4𝛽 + 𝑎5. Note that every linear region 𝑆 is given by the Cartesian product of a polygon 𝑃 and an interval 𝐼 . Thus by 
statement 2 in Corollary 3.1, the minimum of 𝐹 must be obtained when:

1. (𝛼, 𝛽) belongs to side surfaces of 𝑆 and

(a) either there exists 𝑘 ∈ {𝑅,𝐶} such that 𝜕𝐹𝑘∕𝜕𝛾 = 0, or

(b) (𝛼, 𝛽) is in the intersection of side surfaces and top/bottom surfaces.

4 When the coefficient of 𝛼 (or 𝛽) is zero, all or none of 𝛼 (or 𝛽) solve the equation.
5 To shorten statements, we say region 𝑋 is a linear region of function 𝐹 if 𝐹 is linear in every variable on 𝑋.
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2. (𝛼, 𝛽) belongs to top/bottom surfaces of 𝑆 and

(a) there exists 𝑘 ∈ {𝑅,𝐶} such that either 𝜕𝐹𝑘∕𝜕𝛼 = 0 or 𝜕𝐹𝑘∕𝜕𝛽 = 0, or

(b) (𝛼, 𝛽) is in the intersection of side surfaces and top/bottom surfaces.

3. 𝐹𝑅(𝛼, 𝛽) = 𝐹𝐶 (𝛼, 𝛽).
4. ∇𝐹𝑅(𝛼, 𝛽) = 0 or ∇𝐹𝐶 (𝛼, 𝛽) = 0.

For case 1b and 2b, note that the boundary is formed by 𝑂(𝑚) line segments. Furthermore, 𝐹𝑅 and 𝐹𝐶 are linear on each segment. 
Thus it suffices to check their intersection and two endpoints on each segment.

For case 2a and case 4, the equation of zero derivative gives a linear equation on 𝛾 . Then 𝛾 takes a fixed value. Now we have to 
minimize 𝐹 over the polygon 𝑃 of (𝛼, 𝛽). We can use statement 2 in Corollary 3.1 again, and minimize 𝐹 at points on the boundary 
of 𝑃 , with 𝐹𝑅 = 𝐹𝐶 , and with zero partial derivative in 𝛼 or 𝛽. The case of the boundary is similar to case 1b and 2b, consuming time 
𝑂(𝑚). The rest cases are similar to discussions in Proposition A.3: We can turn the problem into minimizing a univariate function 
𝑔. The only difference here is the domain 𝐽 of 𝑔. By the same calculation in the proof of Proposition A.3, it can be shown that 𝐽 is 
a segment (or line) 𝐽 parallel or perpendicular to 𝛼 = 0 when we ignore the restriction of 𝑃 . Domain 𝐽 then can be determined by 
searching the intersection points of 𝐽 and the boundary of 𝑃 in 𝑂(𝑚) time.

For case 1a, the equation of zero derivative gives a linear equation on (𝛼, 𝛽). Then the equation produces a line 𝑙 on (𝛼, 𝛽). Now, 
the feasible set of (𝛼, 𝛽) is a segment 𝐿 determined by the intersection of 𝑙 and 𝑃 . Similar to 𝐽 , we can compute two endpoints of 𝐿
in 𝑂(𝑚) time. Note that by a suitable linear transformation from (𝛼, 𝛽) to (𝛼′, 𝛽′), the equation of 𝑙 becomes 𝛼′ = 0. Then on 𝐿 × 𝐼 , 
𝐹 becomes a function of (𝛽′, 𝛾) being linear in 𝛽′ and 𝛾 , respectively. Now we can apply Proposition A.3 to minimize 𝐹 on 𝐿 × 𝐼 in 
𝑂(1) time.

For case 3, by 𝐹𝑅 = 𝐹𝐶 , we obtain an expression of 𝛾 given by the fraction of linear functions in 𝛼 and 𝛽. A special case is that 
the denominator equals zero. We can deal with this case in the same way as case 1a. Otherwise, by substituting this expression into 
𝐹𝑅, it suffices to minimize a function ℎ(𝛼, 𝛽) with the form (𝑐0 + 𝑐1𝛼 + 𝑐2𝛽 + 𝑐3𝛼2 + 𝑐4𝛼𝛽 + 𝑐5𝛽2)∕(𝑑0 + 𝑑1𝛼 + 𝑑2𝛽) on a given linear 
region.

When 𝑑1 = 𝑑2 = 0, this is to solve quadratic programming on a polygon with 𝑂(𝑚) sides. The minimum is taken either on the 
sides or at interior points with zero derivatives. Since it has only two variables, we can cancel one of the variables via the linear 
equation of a side. Then the minimization on the side is equivalent to minimizing a univariate quadratic function on a segment. On 
the other hand, the zero-derivative condition is exactly two linear equations with two variables. In both situations, the calculation 
can be completed within 𝑂(𝑚) time.

Otherwise, we substitute the denominator with 𝜃, and the expression is transformed into

𝐺1(𝛼, 𝜃) ∶=
𝑒0 + 𝑒1𝛼 + 𝑒2𝛼2

𝜃
+ 𝑒3 + 𝑒4𝛼 + 𝑒5𝜃.

First, we consider the minimum about 𝜃. By the property of hyperbolic function, the minimum can only be obtained at the boundary 
points or at 𝜃 = ±

√(
𝑒0 + 𝑒1𝛼 + 𝑒2𝛼2

)
∕𝑒5 (if exists). Since 𝜃 is linear in (𝛼, 𝛽) and the domain of (𝛼, 𝛽) is a polygon 𝑃 , the domain 

of 𝜃 is a interval given by [𝑀min(𝛼),𝑀max(𝛼)], where 𝑀min,𝑀max are piecewise linear functions with 𝑂(𝑚) pieces. By considering 
vertices of 𝑃 in order, we can calculate linear pieces of 𝑀min and 𝑀max in 𝑂(𝑚) time, denoted by 𝐼min

𝑖
and 𝐼max

𝑗
, respectively. So 

we only need to consider 𝑂(𝑚) cases that 𝜃 takes 𝑀min(𝛼) on 𝛼 ∈ 𝐼min
𝑖

, 𝑀max(𝛼) on 𝛼 ∈ 𝐼max
𝑗

, or ±
√(

𝑒0 + 𝑒1𝛼 + 𝑒2𝛼2
)
∕𝑒5 when (

𝑒0 + 𝑒1𝛼 + 𝑒2𝛼2
)
𝑒5 ≥ 0. In each case, it suffices to find the minimum of either

𝑒0 + 𝑒1𝛼 + 𝑒2𝛼2

𝑡(𝛼) 
+ 𝑒3 + 𝑒4𝛼 + 𝑒5𝑡(𝛼), 𝑡 ∈ {𝑀min,𝑀max} or 

𝑒3 + 𝑒4𝛼 ± 2
√
𝑒5

(
𝑒0 + 𝑒1𝛼 + 𝑒2𝛼2

)
,

where 𝛼 belongs to a certain interval. Each case can be solved by calculating points on the boundary and points with zero derivatives 
in 𝑂(𝑚) time.

We conclude the discussion above with the following proposition.

Proposition A.4. There exists an algorithm finding the minimum point of 𝐹 (𝛼, 𝛽, 𝛾) on linear region 𝑆 = 𝑃 × 𝐼 in 𝑂(𝑚) time, where 𝑃 is a 
polygon of (𝛼, 𝛽) formed by 𝑂(𝑚) linear constraints and 𝐼 is a closed interval of 𝛾 .

Now we come back to function 𝐹 (𝛼, 𝛽, 𝛾). Using Proposition A.1 and Proposition A.2, we can split the domain of 𝐹 into 𝑂(𝑚𝑛)
linear regions in time 𝑂(𝑛 log𝑛+𝑚2 log𝑚). Then on each region, we can use Proposition A.4 to compute the minimum value of 𝐹 in 
time 𝑂(𝑚). The total time complexity is then 𝑂

(
𝑚2(𝑛+ log𝑚) + 𝑛 log𝑛

)
. We summarize it into the following theorem.

Theorem A.4. Give any 𝑥1, 𝑥2, 𝑥3 ∈ Δ𝑚 and 𝑦1, 𝑦2 ∈ Δ𝑛, let

𝐹 (𝛼, 𝛽, 𝛾) = 𝑓
(
𝛼𝑥1 + 𝛽𝑥2 + (1 − 𝛼 − 𝛽)𝑥3, 𝛾𝑦1 + (1 − 𝛾)𝑦2

)
,
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Table B.2

Trial results for different input strategies and optimal mixing 𝑓 -values.

Trial Strategy 1 𝑓 -value Strategy 2 𝑓 -value Strategy 3 𝑓 -value Optimal Mixing 𝑓 -value

1 0.127 0.095 0.284 0.095

2 0.187 0.198 0.213 0.086

3 0.118 0.144 0.205 0.087

4 0.256 0.121 0.220 0.085

5 0.139 0.174 0.136 0.111

6 0.120 0.197 0.258 0.076

7 0.126 0.258 0.139 0.087

8 0.183 0.112 0.141 0.092

9 0.204 0.232 0.202 0.086

10 0.302 0.175 0.125 0.109

where 𝛼, 𝛽, 𝛾, 𝛼 + 𝛽 ∈ [0,1]. Then there exists an algorithm finding the minimum point of 𝐹 (𝛼, 𝛽, 𝛾) in time 𝑂
(
𝑚2(𝑛+ log𝑚) + 𝑛 log𝑛

)
.

A.8. The approximate optimal algorithms and proof of Theorem 4.1

In this part, we present the full algorithm for the 𝜖-optimal (𝑠, 𝑡)-mixing problem and prove Theorem 4.1. The algorithm is shown 
in Algorithm 4.

Appendix B. Using optimal mixing algorithms as an assembling tool for approximate NE

Suppose we have a finite set of algorithms  = {𝐴1,… ,𝐴𝑘} for computing approximate Nash equilibria in bimatrix games. Then, 
we can use (approximate) optimal mixing algorithms to assemble the outputs of these algorithms to obtain a new algorithm as 
Algorithm 6.

Algorithm 6 Assembled Approximate NE Algorithm.

Input: A bimatrix game (𝑅,𝐶).
Output: An approximate Nash equilibrium (𝑥∗, 𝑦∗).
1: Run each algorithm 𝐴𝑖 ∈ on (𝑅,𝐶) to obtain an approximate NE (𝑥𝑖, 𝑦𝑖).
2: Solve the optimal mixing problem with the set of strategies {𝑥1,… , 𝑥𝑘} and {𝑦1,… , 𝑦𝑘}, resulting in an strategy profile (𝑥∗, 𝑦∗).
3: return (𝑥∗, 𝑦∗).

To illustrate the effectiveness of this assembling tool in practice, we conduct some small experiments.

1. Payoff Matrices: We generated two random 3 × 3 matrices, 𝑅 and 𝐶 , where each entry is drawn from a uniform distribution 
over the interval [0,1].

2. Strategies: For each experiment, we randomly generated three pure strategy vectors 𝑥1, 𝑥2, 𝑥3 and 𝑦1, 𝑦2, 𝑦3 for the two players, 
each of dimension 3.

3. Optimization Method: We used the Sequential Least Squares Programming (SLSQP) algorithm to solve the constrained optimiza-

tion problem. An initial guess was set to a uniform distribution, 𝛼𝑖 = 𝛽𝑖 =
1
3 for all 𝑖. The solution provides nearly optimal weights 

𝛼∗ and 𝛽∗, which are used to compute the mixed strategies.

The experimental results are presented in Table B.2. We highlight the ones where the optimal mixing 𝑓 -value is smaller than the 
𝑓 -values of all the strategies.

As is shown in Table B.2, the optimal mixing 𝑓 -value is smaller than the 𝑓 -values of all the strategies in most of the trials. Although 
these experiments are only for illustrative purposes, it shows that the using of optimal mixing algorithms can indeed improve the 
approximation in practice. Further comprehensive experiments are needed to investigate the performance of the assembled algorithm 
in more practical scenarios.

Appendix C. Definitions in discrete geometry

Below are the definitions of several concepts in discrete geometry. The concepts below are either from [47] or basic concepts in 
linear algebra. We append the location of the concepts from [47] for further interests.

1. (Affine Space, P1, Section 1.1) An affine space is a displacement of a vector space. It has the form of 𝑣 + 𝑉 = {𝑣 + 𝑥 ∶ 𝑥 ∈ 𝑉 }, 
where 𝑣 is a vector and 𝑉 is a vector space. Equivalently, an affine space can be expressed as 

{
𝑥 ∈ℝ𝑛 ∶ 𝑢𝖳

𝑖
𝑥 = 𝑣𝑖, 𝑖 ∈ [𝑚]

}
for some 

𝑢𝑖 ∈ℝ𝑛 ⧵ {0} and 𝑣𝑖 ∈ℝ, 𝑖∈ [𝑚]. The dimension of an affine space 𝑉 + 𝑣 is defined to be the dimension of 𝑉 .

2. (Affine Hull, P1, Section 1.1) The affine hull of a set 𝑆 ∈ℝ𝑛, denoted by aff(𝑆), is the minimal affine space containing it.
3. (Dimension, P83, Section 5.2) The dimension of a set 𝑆 ∈ℝ𝑛, denoted by dim(𝑆), is given by the dimension of its affine hull.
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4. (Hyperplane, P3, Section 1.1) In any linear space 𝐻 , a hyperplane is an affine subspace whose dimension is one less than that of 
𝐻 .

5. (Half-space, P3, Section 1.1) In ℝ𝑛, a half-space is the set {𝑥 ∈ℝ𝑛 ∶ 𝑎𝖳𝑥 ≤ 𝑏} or {𝑥 ∈ℝ𝑛 ∶ 𝑎𝖳𝑥 < 𝑏}, where 𝑎 is a nonzero vector 
in ℝ𝑛 and 𝑏 ∈ℝ.

6. (Polytope, P82, Section 5.2) A convex polytope 𝑆 is defined as a bounded set that is the intersection of finitely many half-spaces, 
namely 𝑆 = {𝑥 ∈ℝ𝑛 ∶𝐴𝑥 ≤ 𝑏}, where 𝐴 ∈ℝ𝑘×𝑛 has no zero rows and 𝑏∈ℝ𝑘.

7. (Face, P86, Section 5.3) A face of a polytope 𝑆 is defined by the set {𝑥 ∈ 𝑆 ∶ ∀𝑦 ∈ 𝑆,𝑎𝖳𝑥 ≤ 𝑎𝖳𝑦} for a certain 𝑎 ∈ℝ𝑛. Note that 
by setting 𝑎 = 0, we have 𝑆 itself as a face. By definition, every face of a polytope is also a polytope.

8. (Facet, P87, Section 5.3) A facet of polytope 𝑆 is a face of dimension exactly dim(𝑆) − 1.

9. (Boundary) The boundary of a face 𝑆 is defined as the set of points 𝑥 ∈ 𝑆 such that for any 𝜖 > 0, there exists 𝑦 ∈ aff(𝑆) ⧵ 𝑆
satisfying ‖𝑦− 𝑥‖ < 𝜖. We denote the boundary of 𝑆 as 𝜕𝑆 . The interior of 𝑆 , denoted as 𝑆◦, is defined as 𝑆 ⧵ 𝜕𝑆 .

10. (Line and segment) In ℝ𝑛, a line (segment) is a set of the form {𝑦 ∈ ℝ𝑛 ∶ 𝑦 = 𝑡𝑑 + 𝑏, 𝑡 ∈ 𝐼}, where 𝑑 ∈ ℝ𝑛 is a nonzero vector, 
𝑏 ∈ℝ𝑛, and 𝐼 =ℝ (𝐼 = [𝑢, 𝑣]). It represents a one-dimensional affine space. The vector 𝑑 is called the direction of the line.

11. (Parallel lines) Two lines (segments) are said to be parallel if their directions 𝑑1 and 𝑑2 satisfy 𝑑1 = 𝑘𝑑2 for some nonzero real 
number 𝑘. The relation of being parallel is an equivalence class, and two lines are equivalent if and only if they share a proportional 
direction. Hence, we can also represent a line (segment) using its direction vector, which we will use directly in reference to a line 
below.

12. (Parallel between lines and polytopes) For an affine space 𝐴 ⊆ ℝ𝑛, we say that a vector 𝑑 is parallel to 𝐴 if 𝐴 contains a line 
parallel to 𝑑. Equivalently, if 𝐴 =

{
𝑥 ∈ℝ𝑛 ∶ 𝑢𝖳

𝑖
𝑥 = 𝑣𝑖, 𝑖 ∈ [𝑚]

}
, then 𝑑 ∥ 𝐴 if and only if 𝑢𝖳

𝑖
𝑑 = 0 holds for each 𝑖 ∈ [𝑚]. For a vector 

𝑑 and a polytope 𝑃 ⊆ℝ𝑛, we say that 𝑑 is parallel to 𝑃 if 𝑑 ∥ aff(𝑃 ).
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