
A Computer-aided Approach for Approximate
Nash Equilibria

Xiaotie Deng1[0000−0002−5282−6467], Dongchen Li2[0000−0001−7499−7358], and
Hanyu Li1[0000−0002−5013−3333]⋆

1 CFCS, School of Computer Science, Peking University, Beijing, China
{xiaotie,lhydave}@pku.edu.cn

2 The School of Computing and Data Science, The University of Hong Kong,
Pokfulam, Hong Kong

dongchen.li@connect.hku.hk

Abstract. Ever since the landmark PPAD-completeness result for Nash
equilibria in two-player normal-form games, significant research has fo-
cused on developing polynomial-time algorithms for ϵ-approximate Nash
equilibria (ϵ-NE). The challenge of establishing the optimal approxima-
tion guarantee in polynomial time remains pivotal. While advancements
have been made for two-player games, progress in multi-player games is
still limited. Difficulties arise due to the increased sophistication of multi-
player games and the lack of tools for analyzing approximation bounds.
This paper presents a method that allows machines to perform approxi-
mation analysis for multi-player games using a domain-specific language
called LegoNE. LegoNE enables researchers to design algorithms with
only high-level intuitions, while it automatically uncovers the underly-
ing structures and proves the approximation bounds on its own. Using
LegoNE, we design a new algorithm for three-player games that achieves
a (0.56+δ)-NE, improving the previous best bound (0.6+δ). This shows
that human-machine collaboration allows us to obtain higher-level un-
derstandings and better results.

Keywords: approximate Nash equilibria· automation· programming
language· formal verification· multi-player games

1 Introduction

1.1 Motivation

Nash equilibrium (NE) is a solution concept in which no player can gain more
by unilaterally deviating from their current strategy. Ever since Nash’s exis-
tence proof of NE in finite normal-form games [27], NE has become a standard
solution concept in game theory. The non-constructive nature of Nash’s proof
leads to the computational consideration of NE, which also becomes a funda-
mental problem at the intersection of computer science and economics. A series
⋆ Corresponding author

2 X. Deng et al.

of cornerstone works show that computing exact NE is PPAD-complete [10] for
two-player games and FIXP-complete [18] for r-player games with r ≥ 3. Due
to these hardness results, it is well-believed that there is no polynomial-time
algorithm for computing exact NE.

This motivates the study of ϵ-approximate Nash equilibrium (ϵ-NE), where
players can gain at most ϵ additional payoff by deviating from the original
strategy. It is shown that computing ϵ-NE in an r-player m-action game has
a quasi-polynomial time algorithm with respect to r and m [4,25]. Such an up-
per bound result matches the recent breakthrough of the lower bound result by
Rubinstein [29], which shows that under a moderate assumption3, there exists
an unknown constant ϵ∗, and computing ϵ-NE even in two-player games requires
quasi-polynomial time for any ϵ < ϵ∗.

Attention thus turns to finding the smallest ϵ that admits a polynomial-time
algorithm for ϵ-NE. Ever since the PPAD-hardness results [10,13], a flourishing
line of research has been devoted to improving such an ϵ, most focusing on
two-player games. Kontogiannis, Panagopoulou, and Spirakis [24] proposed an
algorithm with ϵ = 3/4; Daskalakis, Mehta, and Papadimitriou improved it to
1/2 [15] and 0.38+δ [14]; very soon, Bosse, Byrka, and Markakis [5] reached ϵ =
0.364. Then, in the first WINE conference, the renowned work [31] by Tsaknakis
and Spirakis introduced a gradient-descent approach to achieve ϵ = 0.3393 + δ,
which remained the state of the art for 15 years. Very recently, the stepping-
stone work by Deligkas, Fasoulakis, and Markakis [16] improved the bound to
ϵ = 1/3 + δ by carefully revising the Tsaknakis-Spirakis algorithm.

While the progress on two-player games is remarkable, it almost remains
blank for multi-player games. The only algorithmic result is a polynomial-time
algorithm computing (1/2+ δ)-NE for polymatrix games [17], which is a proper
generalization of the gradient-descent approach by Tsaknakis and Spirakis [31].
We also know that if we have an algorithm for ϵ-NE in r-player games, then we
can easily extend it to compute a 1/(2 − ϵ)-NE in (r + 1)-player games [6,21].
Using this extension technique, if we focus on three-player games, the best-known
algorithm computes a (0.6+ δ)-NE [16]. For more than 16 years, the design and
analysis techniques for multi-player algorithms have stagnated.

1.2 Contributions
The main result of this paper is as follows.
Theorem 1. There exists a polynomial-time algorithm that computes a (0.56 +
δ)-NE for three-player games.

We improve the best-known bound for three-player games from (0.6 + δ) to
(0.56+ δ) by proposing a new algorithm and analyzing its approximation bound.

To make the improvement, we must address two challenges. In the two-player
setting, different strategies are constructed and allowed to interplay in an appro-
priate way to establish an approximation bound. When applying similar ideas
to the three-player setting, we face the following challenges.
3 That is, the exponential-time hypothesis (ETH) for PPAD.

A Computer-aided Approach for Approximate Nash Equilibria 3

– For algorithm design, the interplay between different strategies is much more
complicated in three-player games than in two-player games. In the tradi-
tional approach for two-player algorithms, results from the approximation
analysis are used to guide the selection of parameters in the algorithm. How-
ever, it becomes more sophisticated for three-player algorithms because the
parameter space grows exponentially with the number of players.

– The algorithm analysis is also more complicated in three-player games. The
approximation bound must be represented by tensor products, which are
more complicated to analyze than matrix products in two-player games,
making matrix-based techniques less feasible. Consequently, for three-player
games, we previously had only one simple technique with analyzable ap-
proximation bounds, the extension technique, which views the two-player
algorithm as a black box and extends it to three-player games.

To overcome these challenges, we develop new techniques for designing and
analyzing algorithms for approximate NE, as summarized below.

– For algorithm design, we propose the optimal mixing operations. First, it
adopts the traditional mixing technique in the literature, that is, to “mix”
the strategies constructed in different manners to achieve a better approxima-
tion bound. Thus, the mixing operation creates interplays between different
strategies. Second, it extends the optimization viewpoint in [31] and finds
the optimal way to mix the strategies.

– For the algorithm analysis, our proof of Theorem 1 introduces a computer-
aided methodology. It incorporates techniques from programming languages
and formal verification.
More specifically, we introduce a (domain-specific) programming language
called LegoNE. LegoNE allows users to define basic operations as Lego bricks
and write the pseudo-code of an algorithm with defined basic operations as
if playing with Lego bricks. Using Floyd-Hoare semantic [20,22], the LegoNE
compiler can automatically turn the pseudo-code into a fixed-size constrained
optimization problem, whose optimal value is exactly the approximation
bound of the algorithm. An overview of the proof procedure using LegoNE
is shown in Figure 1.

One should note that it is not rare to use an optimization solver in algorithm
analysis. Many works also rely on an optimization solver to compute the final
approximation/competitive ratio or complexity results [3,7,8,12,19,23,26,28,33].
The contribution of our work is to introduce verification and programming lan-
guage techniques into the approximation analysis to automate the process of
transferring an algorithm into an optimization problem that solves its approxi-
mation bound.

Facing the aforementioned challenges, our techniques bring the following ben-
efits.

– When designing an algorithm, we can focus on the design itself and no longer
need the instructions from the analysis of the approximation bound. To do

4 X. Deng et al.

LegoNE
compiler

num_players = 2

def BestResponse1(s2: p2) -> p1:
 description = "Best response for player 1 against s2"
 extra_params = []
 constraints = [
 forall(x:p1).(U1(x,s2) <= U1(x1,s2))
]
 return x1

...

def algo():
 i: p1 = Random1()
 j: p2 = BestResponse2(i)
 k: p1 = BestResponse1(j)

(* Mathematica code generated from ... *)

(* name alias and parameters *)
b_U1; (* U1(s1,s2) *)
b_f1; (* f1(s1,s2) *)
...

(* constraints *)
constraints = {
 ((a_U2 + a_f2) <= b_U2), (* ((U2(t1,s2) + f2(t1,s2)) <= U2(s1,s2)) *)
 (a_U1 <= b_U1), (* (U1(t1,s2) <= U1(s1,s2)) *)
 ((b_U2 + b_f2) <= b_U2), (* ((U2(s1,s2) + f2(s1,s2)) <= U2(s1,s2)) *)
 ...
};

(* solve the approximation bound *)
NMaximize[{bound1, constraints}, {b_U1, b_f1, b_U2, b_f2, a_U1,

a_f1, a_U2, a_f2, rho}]

Basic
Operations

Algorithm

LegoNE code Fixed-size constrained
optimization problem

Optimization
solver

Approximation
bound

By computerBy human

Fig. 1. An overview of the LegoNE framework

so, we simply use the optimal mixing operation as a subroutine to optimally
mix strategies in an algorithm. Then, in the algorithm design phases, the
algorithm itself can automatically discover the optimal way to mix strategies.

– A computer program can discover by itself the underlying relationships be-
tween various components of an algorithm. Although we have numerous de-
sign techniques for approximate NE algorithms, analyzing these techniques
in multi-player games, particularly their interplays, remains a significant
challenge. This is the main obstacle to going beyond the extension technique
and opening the black box of two-player algorithms. LegoNE addresses this
challenge by automatically discovering these interplays, presenting them as
constraints, and producing an approximation analysis with deeper insights
than the traditional black-box approach.

With these two advantages, researchers are freed from the complexities of
detailed calculations, allowing them to focus on high-level intuition and insights
for algorithm design, while the computer handles the discovery of lower-level
insights and performs the tedious calculations required for algorithm analysis.
Altogether, we are able to design and analyze the new algorithm for three-player
games and prove the approximation bound of 0.56 + δ.

This paper is organized as follows. In Section 2, we introduce the basic def-
initions and notations related to multi-player (normal-form) games and approx-
imate Nash equilibria. In Section 3, we present the LegoNE framework and the
optimal mixing operation. In Section 4, we show how to use LegoNE to auto-
mate the approximation analysis of the new algorithm. Finally, in Section 5, we
conclude the paper and discuss future work.

2 Preliminaries

In this section, we introduce the basic definitions and notations related to multi-
player (normal-form) games and approximate Nash equilibria.

A Computer-aided Approach for Approximate Nash Equilibria 5

Games and mixed strategies. We consider a normal-form game with r players.
Each player i has an action space Ai of size ni. The (mixed) strategy xi of player
i is a probability distribution over her action space, denoted by

∆ni =

{
xi ∈ Rni : xi ≥ 0,

ni∑
k=1

xi
k = 1

}
.

We always use the superscript i to denote the variables for player i.
A strategy profile is a tuple of all players’ strategies, denoted as

x = (x1, . . . ,xr) ∈ ∆n1
× · · · ×∆nr

.

Specifically, for each player i, the unit vector ek ∈ ∆ni
represents the strategy of

choosing only the kth action, which is called a pure strategy. We also write x−i

to denote the strategy profile of all players except player i and x−i,j to denote
the strategy profile of all players except players i and j.

Each player i has a payoff function ui from
∏r

j=1 A
j to R. By adjusting

the payoffs through shifting and scaling, we assume that the payoffs are in the
range [0, 1]. The payoff function can be naturally extended to the mixed strategy
space, where ui(x) is the expected payoff of player i under strategy profile x, i.e.,
ui(x) = Ea∼x[ui(a)].

Note that the definition of ui is equivalent to the [0, 1]-bounded multi-linear
function over ∆n1 × · · · × ∆nr , that is, ui ∈ [0, 1] is a linear function of each
player’s mixed strategy. Formally, for any i ∈ [r], any xi,xi ∈ ∆ni

, any x−i ∈
∆n1

× · · · ×∆ni−1
×∆ni+1

× · · · ×∆nr
, and any λ ∈ [0, 1], we have

ui(λx
i + (1− λ)xi,x−i) = λui(x

i,x−i) + (1− λ)ui(x
i,x−i).

Approximate Nash equilibria from the perspective of optimization. We generalize
[31] to define ϵ-approximate Nash equilibria (ϵ-NE) for multi-player games. First,
define the regret of player i under strategy profile x as

fi(x) := max
xi∈∆ni

ui(x
i,x−i)− ui(x) = max

k∈[ni]
ui(ek,x

−i)− ui(x).

Intuitively, fi(x) measures the maximum extra payoff that player i can get by de-
viating from xi to any other mixed strategy. By the linearity of ui, the maximum
can be achieved by a pure strategy.

Then, define f(x) := maxi∈[r] fi(x). In the literature, a strategy profile x is
an ϵ-NE if f(x) ≤ ϵ. In other words, x is an ϵ-NE if no player can gain more
than ϵ by deviating from their current strategy. f(x) is called the approximation
of x. Particularly, a strategy profile is a Nash equilibrium (NE) if and only if it
is a 0-NE. The global minimum of f over ∆n1

× · · · × ∆nr
is always 0 for the

existence of NE [27].

3 The New Algorithm Designed in a Lego-Brick Style
In this section, we show how to design our new algorithm for Theorem 1 in a Lego-
brick style. As in the Lego world, algorithm design can be viewed as assembling

6 X. Deng et al.

different basic operations (bricks) to form a full algorithm. For example, to sort
three real numbers a, b, c, we have to use comparison operations (if-else) and
swap operations. When we write a sequence of if-else and swap operations in a
specific order, we get the full algorithm for sorting three numbers. We design
our new algorithm in the exact same way.

We first present the basic operations and then present the full algorithm for
Theorem 1 by assembling these basic operations.

3.1 Basic Operations

In the literature, since all algorithms entangle the algorithm design with the
analysis, the basic operations are not explicitly mentioned. However, we can
extract the basic operations from these algorithms. We list the polynomial-time
basic operations used in our new algorithm as follows.

– Random strategy:

xi = Randomi().

Description: Sample a random strategy xi for player i.
– Best response (first occurred in [15]):

xi = BestResponse(x−i).

Description: For a player i, given a strategy profile x−i of the other players,
find the best response strategy xi = argmaxxi∈∆ni

ui(x
i,x−i).

– Uniform mixing (first occurred in [24]):

xi = UniformMixing(xi
1, . . . ,x

i
s).

Description: For a player i, given strategies xi
1, . . . ,x

i
s, output the strategy

xi = 1
s

∑s
k=1 x

i
k.

– Branching:

IfThenElse(a, b, branch 1, branch 2).

Description: Given certain values a, b, go to branch 1 if a ≥ b, and go to
branch 2 otherwise.

– Stationary point (first occurred in [31]):

xi,xj ,yi,yj = StationaryPoint(x−i,j).

Description: Given a strategy profile x−i,j of the other players, find the
stationary point (xi,xj) and dual point (yi,yj) of function

max{fi(·, ·,x−i,j), fj(·, ·,x−i,j)}.

A Computer-aided Approach for Approximate Nash Equilibria 7

All but the last basic operation are quite direct. The last basic operation,
StationaryPoint, is a key operation in the current state of the art [16] and pre-
vious state of the art [31] in two-player games. It views approximate NE as an
optimization problem, i.e., finding the minimum of the function f defined in
Section 2. Then, it computes the local optimum of f using a gradient descent
method. To compute the steepest descent direction, it computes a linear program,
which also gives a dual solution. After a few iterations, it finds a stationary point
(xi,xj) (i.e., zero-gradient point), together with a dual solution (yi,yj).

Then, we propose a new basic operation, termed optimal mixing, which can
be used to combine arbitrary strategies produced by basic operations. The idea
is to simply find the optimal convex combination of all occurred strategies that
minimizes the function f . Formally, the optimal mixing operation is defined as
follows.

Definition 1 (Optimal mixing). Given a set of strategies s11, . . . , s
1
t1 ∈

∆n1
, . . . , sr1, . . . , s

r
tr ∈ ∆nr

, and payoff functions u1, . . . , ur, the optimal mixing
operation OptimalMixing outputs the strategy profile (s1∗, . . . , s

r
∗) that minimizes

the function f on M, the set of all convex combinations of the strategies, i.e.,

M =

{
(s1, . . . , sr) ∈ ∆n1

× · · · ×∆nr
:

sk =

tk∑
i=1

αk
i s

k
i ;α

k
j ≥ 0, j ∈ [tk],

tk∑
i=1

αk
i = 1, k ∈ [r]

}
.

Importantly, since an algorithm can only have a fixed number of basic op-
erations, the optimal mixing operation should only consider a fixed number of
strategies.

Then, we show that for fixed r (number of players) and t1, . . . , tr (numbers
of strategies), the optimal mixing operation has a fully polynomial-time approx-
imation scheme (FPTAS).

Theorem 2. For fixed r and t1, . . . , tr, the optimal mixing operation has an
FPTAS.

More precisely, for any ε > 0, there is an algorithm that outputs a strategy
profile (s1, . . . , sr) such that

f(s1, . . . , sr) ≤ f(s1∗, . . . , s
r
∗) + ε

in poly(n1, . . . , nr, 1/ε) time, where (s1∗, . . . , s
r
∗) is the output of the optimal

mixing operation and n1, . . . , nr are the sizes of the action sets A1, . . . , Ar (i.e.,
the input size).

Here we only sketch the proof idea. Essentially, we treat the optimal mixing
as a continuous constrained optimization problem. The objective function f is
C-Lipschitz continuous in the L∞ norm with respect to coefficients (αk

i)k,i.

8 X. Deng et al.

Formally, for any x, y ∈ M with coefficients α = (αk
i)k,i and β = (βk

i)k,i,

|f(x)− f(y)| ≤ C ‖α− β‖L∞ ,

where C = rmaxk∈[r]{tk}.
Then, we divide the domain M into a finite number of grids, and then we

take the grid point that minimizes the function f as the output of the optimal
mixing. It can be proved that the number of grids is constant to ni, so the
running time is polynomial to ni.

3.2 Full Algorithm for Theorem 1

Now we can present the full algorithm for Theorem 1 by assembling the basic
operations. The algorithm is given in Algorithm 1. The design idea of Algorithm 1
is a proper combination of the previous state of the art [31] and the state of the
art [16] for two-player games.

Algorithm 1 Our algorithm for three-player games
1: x3 = Random3()
2: (x1

s,x
2
s,w

1,w2) = StationaryPoint(x3)
3: if f1(x

1
s,x

2
s,x

3) ≥ f2(x
1
s,x

2
s,x

3) then
4: ŷ2 = UniformMixing(x2

s,w
2)

5: ŷ1 = BestResponse(ŷ2,x3)
6: z2

s , z
3
s ,w

2
p,w

3
p = StationaryPoint(x1

s)
7: o1,o2,o3 = OptimalMixing(x1

s,w
1, ŷ1;x2

s,w
2, ŷ2, z2

s ,w
2
p;x

3, z3
s ,w

3
p)

8: else
9: ŷ1 = UniformMixing(x1

s,w
1)

10: ŷ2 = BestResponse(ŷ1,x3)
11: z1

s , z
3
s ,w

1
p,w

3
p = StationaryPoint(x2

s)
12: o1,o2,o3 = OptimalMixing(x1

s,w
1, ŷ1, z1

s ,w
1
p;x

2
s,w

2, ŷ2;x3, z3
s ,w

3
p)

13: end if
14: return (o1,o2,o3)

As a comparison, we here restate the traditional extension technique and see
how the current best algorithm for three-player games is obtained. Suppose an
algorithm A computes an α-NE for two-player games. Then, the algorithm A can
be extended to a 1/(2− α)-NE for three-player games [6,21] as in Algorithm 2.

Clearly, Algorithm 1 does not use this extension technique. Instead, it uses
the optimal mixing operation to combine the strategies produced by basic op-
erations. Moreover, for all algorithms in the literature, without optimal mixing,
people have to manually choose the combination parameters (e.g., δ in the ex-
tension technique) to guarantee a certain approximation bound. In contrast, the
optimal mixing operation automatically finds the best combination of strategies
to minimize such a bound.

A Computer-aided Approach for Approximate Nash Equilibria 9

Algorithm 2 Previous Algorithm for Three-Player Games
1: x3 = Random3()
2: (x1

o,x
2
o) = A(u1(·, ·,x3), u2(·, ·,x3)) // A is a two-player algorithm

3: x3
o = BestResponse(x1

o,x
2
o)

4: δ = (1− α)/(2− α)
5: return (x1

o,x
2
o, (1− δ)x3

o + δx3)

4 Computer-Aided Approximation Analysis Using
LegoNE

In Section 3, we propose a new algorithm for approximate Nash equilibria in
three-player games. However, the main difficulty lies not in the algorithm design
but the analysis. In this section, we introduce a verification approach to analyze
the approximation bound of an arbitrary algorithm for approximate Nash equi-
libria. The main tool we develop is a programming language, LegoNE, to write an
algorithm and automatically derive its approximation bound. With LegoNE, we
can develop Algorithm 1 with only high-level intuitions and then automatically
derive its approximation bound.

We first introduce the key idea for the verification approach, the Floyd-Hoare
semantics, and its specific form for approximate Nash equilibria. Then, we show
how LegoNE can be used to translate an algorithm into a fixed-size constrained
optimization problem, whose solution exactly gives the approximation bound of
the algorithm.

4.1 Floyd-Hoare Semantics and Logic Encoding

Usually, when we describe an algorithm, we say how it will execute step by step
and what the output will be. This is called the operational semantics for an
algorithm. However, if we want to prove certain properties of an algorithm, we
care more about what properties a step implies than how it is executed. Thus, we
can use logic formulas to encode the properties of all steps and then use these
formulas as axioms to prove the properties of the algorithm. This is the key idea
of the Floyd-Hoare semantics [20,22].

As a concrete example, suppose we want to find the maximum element in
a list {a1, a2, a3}. An algorithm for this purpose is to compare a1 and a2, then
compare the larger one with a3. The basic operation is simply

s = IfThenElse(a1 > a2, a1, a2).

Equivalently, this operation finds an s satisfying the logic formula (encoding)

[(s = a1) ∧ (a1 > a2)] ∨ [(s = a2) ∧ (a1 ≤ a2)].

Thus, a branch operation can be viewed as the above formula. To prove that the
algorithm’s output yout is indeed the maximum element in the list, it suffices to

10 X. Deng et al.

show that we can derive the following logic formula from the encodings of the
basic operations:

(yout ≥ a1) ∧ (yout ≥ a2) ∧ (yout ≥ a3)∧
(yout = a1 ∨ yout = a2 ∨ yout = a3).

For approximate NE, we can use exactly the same idea. We can encode the
basic operations in the algorithm as logic formulas, and then use these formulas
to prove “This algorithm has an approximation bound of ϵ”, which is also another
logic formula.

As an illustration, we consider Algorithm 3, a simpler two-player algorithm
in the literature [15], whose approximation bound is 0.5. We keep the notations
the same as in the original paper.

Algorithm 3 DMP 0.5-NE algorithm
1: i = Random1()
2: j = BestResponse(i)
3: k = BestResponse(j)
4: r1, r2 = OptimalMixing(i, k; j)

This algorithm simply samples a random pure strategy i for player 1, then
finds the best response j for player 2 against i, and then finds the best response
k for player 1 against j. Finally, it outputs the optimal mixing of i, j, k.4

We want to show that this algorithm has an approximation bound of 0.5.
To do this, we first need to formally state the conclusion we want to prove in
a logic formula. A natural way is to say that for any payoff functions u1, u2,
whenever i, j, k, r1, r2 are produced by Algorithm 3, the approximation of the
output strategy profile (r1, r2) is at most 0.5, i.e.,

(∀u1, u2)(∀i, j, k, r1, r2)
(i, j, k, r1, r2 are produced by Algorithm 3 → f(r1, r2) ≤ 0.5).

(1)

Then, we need to figure out the premises of the implication. Observe line 2
of Algorithm 3, which states that j is the best response to i. Equivalently, for
any strategy y of player 2, the payoff of player 2 against i is at most the payoff
against j. We can write this as a logic formula:

∀y(u2(i, y) ≤ u2(i, j)).

In this way, we encode step 2 of Algorithm 3 as a logic formula. Similarly, we
can encode steps 1 and 3 as logic formulas. We denote such a mapping from one
step to a logic formula as

ϕ[step] 7→ [logic formula].
4 Rigorously speaking, in the original paper, there is no OptimalMixing operation. In-

stead, the algorithm uses a parameter to mix strategies i and k.

A Computer-aided Approach for Approximate Nash Equilibria 11

A much more difficult step is to encode the OptimalMixing operation given
in Definition 1. The optimal mixing operation is the solution to a continuous
optimization problem, which is not directly expressible in logic formulas. Instead,
we provide a formula that is implied by the optimal mixing operation, namely,
a necessary condition of the optimal mixing operation. Formally, we have the
following theorem.
Theorem 3. For any fixed r and t1, . . . , tr, if x1

o, . . . ,x
r
o are the output of the

optimal mixing operation given the input strategies ski , then there is a term L∗

such that

ϕ
[
(x1

o, . . . ,x
r
o) = OptimalMixing(s11, . . . , s

r
tr)

]
7→ [f(x1

o, . . . ,x
r
o) ≤ L∗]

and L∗ is expressed by fi values on the input strategies ski with arithmetic op-
erations +,−,×,÷, <,>, max,min operations over finite elements, and branch
operations.

The proof of Theorem 3 is quite intuitive yet technical. We omit it here.
Note that the particular form of the upper bound L∗ is not arbitrarily chosen.

The form given in the theorem is important for the later computer-aided method
to utilize easily.

Finally, we can complete the encoding in (1) by using the above formulas:

∀u1, ∀u2, ∀i, ∀j, ∀k, ∀r1, ∀r2 (
(∀y (u2(i, y) ≤ u2(i, j))∧ (encoding of j = BestResponse(i))
∀x (u1(x, j) ≤ u1(k, j))∧ (encoding of k = BestResponse(j))
ϕ[(r1, r2) = OptimalMixing(i, k, j)]∧ (encoding of optimal mixing)
inherent formulas) (inherent formulas)
→ f(r1, r2) ≤ 0.5). (approximation bound)

Here, ”inherent formulas” are the formulas that are not explicitly stated in
the algorithm but are implicitly satisfied by the algorithm. This can also be
formalized as the domains of the payoff functions and strategies, but we omit
them here for simplicity. For example, payoff functions are in [0, 1] and function
fi and ui have the following relationship:

fi(x
i,x−i) = max

xi
ui(x

i,x−i)− ui(x
i,x−i).

The above procedure can be generalized to Algorithm 1. More generally,
using LegoNE, we can write the logic encodings of an arbitrarily defined basic
operation.
Remark 1. In fact, all basic operations in the literature can be easily encoded
in LegoNE in the following form:

∀x1
1, . . . ,x

r
mr

∀U1, U2, . . . (α COMP β),

where xs
t is the t-th strategy variable of player s (like i, j, k in (1)), Ui is the payoff

variable (which is one of u1, u2, . . . , ur), and α, β are arithmetic expressions over
xs
t and Ui. The COMP is a comparison operator, like ≤, =, and ≥.

12 X. Deng et al.

4.2 An Overview of Computer-Aided Techniques in LegoNE

Now we describe how computer programs can be used to discover the underly-
ing properties of an algorithm and use them to derive an approximation bound.
Again, we consider Algorithm 3 as an illustrative example. The procedure de-
scribed here can be generalized to Algorithm 1 as well as any other algorithms
implemented in LegoNE.

The main idea is to reduce the problem of proving an approximation bound
to deciding a real-variable arithmetic formula. This is achieved by the following
steps.

Step 1: Interplay analysis and quantifier elimination. First, we need to extract
the interplay between strategies produced by the algorithm from the logic en-
codings. This is done by the quantifier elimination technique, more specifically,
the instantiation technique.

For example, Algorithm 3 produces strategies i, j, k, r1, r2. Clearly, these
strategies are not arbitrary strategies but have interplays with each other. We
need to extract relations from these interplays to derive the approximation
bound.

Consider line 3 in Algorithm 3. The logic encoding of this line is

∀x, (u1(x, j) ≤ u1(k, j)).

Let us see two different kinds of relations that can be derived from this logic
encoding.

– Importantly, there is a universal quantifier ∀x. This means that the inequal-
ity holds for any strategy x of player 1. Specifically, this inequality holds
when x = i. Thus, we can derive u1(i, j) ≤ u1(k, j) from the logic encoding
of line 3. This reveals a relation between u1(i, j) and u1(k, j).

– For another kind of relation, since this inequality holds for any x, it also holds
when u1(·, j) reaches its maximum. Thus, we can derive maxx u1(x, j) ≤
u1(k, j). This is a relation between maxx u1(x, j) and u1(k, j).

Both kinds of relations can be automatically derived by computer programs
since they are simply instantiations of the universal quantifiers.

Now we show the connections between these two kinds of relations and the ap-
proximation bound. Using Theorem 3, we know that f(r1, r2) is upper bounded
by a term L∗, which is expressed by fi values on the input strategies i, j, k with
arithmetic operations. If we can show that L∗ ≤ 0.5, then we can prove that the
algorithm has an approximation bound of 0.5.

To achieve this, recall that function fi is defined as

fi(x
i,x−i) = max

xi
ui(x

i,x−i)− ui(x
i,x−i).

Particularly, in the case of Algorithm 3, L∗ contains the following terms: u1(i, j),
u1(k, j), u2(i, j), u2(k, j), maxx u1(x, j), maxy u2(i, y), and maxy u2(k, y). The
above two kinds of relations exactly reveal the relations over these terms!

A Computer-aided Approach for Approximate Nash Equilibria 13

Following the above procedure, we actually deduce from (1) a logic formula
in the following form:

∀u1, ∀u2, ∀i, ∀j, ∀k, ∀r1, ∀r2 (. . .
∧ [u1(i, j) ≤ u1(k, j)] ∧ [max

x
u1(x, j) ≤ u1(k, j)]∧ (derived from line 3)

. . . → f(r1, r2) ≤ 0.5).

An important observation is that the above formula only involves variables
ui, i, j, k, r1, r2 in a very compact form: they are only used in the following forms:
ui(x, y), maxx u1(x, y), maxy u2(x, y), fi(x, y), and f(x, y). Thus, the universal
quantifiers can be relaxed over u1(i, j), u1(k, j), and so on:

∀u1(i, j)∀u1(k, j)∀max
x

u1(x, j) · · · (. . .

∧ [u1(i, j) ≤ u1(k, j)] ∧ [max
x

u1(x, j) ≤ u1(k, j)]∧ (derived from line 3)

. . . → f(r1, r2) ≤ 0.5).

In the original goal (1), the universal quantifiers ∀u1, ∀u2, ∀i, ... range over
all possible payoff functions and strategies. They are infinite-dimensional objects.
By the above quantifier elimination, we can reduce the infinite-dimensional ob-
jects to finitely many real variables. This is a key step to use computer programs
to prove the bound.

Step 2: Decide real arithmetic theories. With Step 1, we have reduced the prob-
lem to proving a logic formula involving only finitely many real variables and
arithmetic operations. Actually, such formulas form the theory of first-order
real arithmetic FOLR. FOLR contains first-order formulas that involve finitely
many real variables, universal or existential quantifiers (∀, ∃), logic connectives
(∧,∨,→,¬), and arithmetic operations (+,−,×,÷, <,=).5

FOLR has the following important property.

Theorem 4 (Tarski [30]). FOLR is decidable. That is, there exists an algo-
rithm, for any ϕ ∈ FOLR, it decides whether ϕ is valid (i.e., a true statement).

In the verification community, various algorithms have been proposed to
efficiently decide (subsets of) FOLR. The fastest algorithm for general FOLR uses
cylindrical algebraic decomposition (CAD) [9,11].

Based on this theorem, the formula obtained in Step 1, belonging to FOLR,
can be directly proved by CAD. This completes the proof of the approximation
bound of an algorithm all by computer programs.
5 Note that the maximum operators can be expressed in FOLR: Define max{x, y} by

a new variable z satisfying (x ≥ y → z = x) ∧ (x < y → z = y). Similarly, the
minimum operator min{x, y} and absolute value |x| can be expressed in FOLR.

14 X. Deng et al.

One more step: Find the approximation bound by computer programs. With the
above steps, we can prove an approximation bound of an algorithm. However,
when we design an algorithm, we cannot know in advance what the approxima-
tion bound will be. Thus, we need to find the approximation bound by computer
programs. This is a much more practical problem.

Actually, this step can be easily achieved by computer programs. For a naive
approach, we can simply enumerate all possible approximation bounds from 0 to
1 with a binary search. For each approximation bound ϵ, we can check whether
the formula is valid using CAD. If it is valid, then we know that the algorithm
has an approximation bound of ϵ. Otherwise, we know that we have to search
for a greater ϵ.

However, such a naive approach is not efficient. To determine a bound with
an accuracy of 0.01, we need to run CAD at least seven times (2−7 ≈ 0.0078).
To make the process more efficient, we need the following observation.

Consider Algorithm 3 again. This time, we do not know the approximation
bound of the algorithm. Instead, we set an unknown approximation bound b and
rewrite (1) as

(∀u1, u2)(∀i, j, k, r1, r2)
(i, j, k, r1, r2 are produced by Algorithm 3 → f(r1, r2) ≤ b).

(2)

We need to find a real number b as small as possible such that the above formula
is valid.

Similarly, we use quantifier elimination in Step 1 and turn (2) into

∀max
y′

u2(x, y
′), ∀max

x′
u1(x

′, y), ∀us(x, y), ∀fs(x, y)

(ϕ → [f(r1, r2) ≤ b]).
(3)

Here, ϕ is a quantifier-free formula.
Using Theorem 3 to construct an upper bound L∗ of f(r1, r2), we only need

to find a real number b such that L∗ ≤ b. Recall that all real variables appearing
in L∗ are included in universal quantifiers in (3). Since we need L∗ ≤ b to hold
for all values of these real variables, we can compute the maximum value of L∗

over all possible values of these real variables and set b to be this maximum
value. Clearly, bound b calculated in this way makes formula (2) valid. Thus, we
can write down the following constrained optimization problem:

maximize max{f1(r1, r2), f2(r1, r2)}
over fs(x, y), us(x, y),max

y′
u2(x, y

′),max
x′

u1(x
′, y),

b, s ∈ {1, 2}, x ∈ {i, k, r1}, y ∈ {j, r2}
subject to ϕ.

(4)

Then we show how to solve this optimization problem. First, since constraint
ϕ is quantifier-free, we can write the premise into disjunctive normal form (DNF),
say (a1 ≤ a2 ∧ a5 ≥ a6) ∨ (b1 = b2 ∧ b3 ≥ b4) ∨ (c1 ≥ c2). This step can be also
performed by computer programs [32].

A Computer-aided Approach for Approximate Nash Equilibria 15

Second, (4) can be divided into three optimization problems: to maximize
f(r1, r2) subject to a1 ≤ a2 ∧a5 ≥ a6, to maximize f(r1, r2) subject to b1 = b2 ∧
b3 ≥ b4, and to maximize f(r1, r2) subject to c1 ≥ c2. All of these optimization
problems are fixed-size constrained optimization problem, and thus can be solved
by numerical solvers (like Mathematica [2] or Gurobi [1]). Suppose the optimal
value of these problems are v1, v2, v3. Then, we actually prove that

– if b1 = b2 ∧ b3 ≥ b4, then f(r1, r2) ≤ v1;
– if a1 ≤ a2 ∧ a5 ≥ a6, then f(r1, r2) ≤ v2;
– if c1 ≥ c2, then f(r1, r2) ≤ v3.

Finally, combining these results, we show that under constraint ϕ, f(r1, r2) ≤
max{v1, v2, v3}. Thus, we can set b = max{v1, v2, v3} as the final approximation
bound.

Note that all above steps can be directly applied to Algorithm 1. Actually, we
use mathematica to compute the final 0.56 + δ approximation bound. To show
the generality of our method, we also implement most two-player algorithms in
the literature in LegoNE and reprove their approximation bounds by the same
method.

4.3 High-Level Intuitions behind Algorithm 1

With the above computer-aided techniques, we can easily analyze the approxi-
mation bound of Algorithm 1. We provide some high-level intuition behind the
improvement here.

See line 3 in Algorithm 3, whose logic encoding is ∀x (u1(x, j) ≤ u1(k, j)). We
can choose one variable x arbitrarily. This induces a relation (i.e., constraint) be-
tween u1(i, j) and u1(k, j). In contrast, in Algorithm 1, one of the logic encodings
of StationaryPoint is as follows.

∀xi, ∀xj , fi(x
i,xj ,x−i,j) ≤
ρ(ui(y

i,xj ,x−i,j)− ui(x
i,xj ,x−i,j)−

ui(x
i,xj ,x−i,j) + ui(x

i,xj ,x−i,j))+

(1− ρ)(uj(x
i,yj ,x−i,j)− uj(x

i,xj ,x−i,j)−
uj(x

i,xj ,x−i,j) + uj(x
i,xj ,x−i,j)).

It involves two variables xi,xj in one formula. Thus, the algorithm can exploit
the interplay between strategies from different players i, j much more effectively
and produce more relations (i.e., stronger constraints) on the approximation
bound.

In the novel Algorithm 1, we use two StationaryPoint operations, fixing player
3 and 1 (or 2), respectively. The logic encodings of these two operations together
bring four universal quantifiers from all three players. Thus, LegoNE can exploit
the interplay between all three players.

In comparison, the previous best algorithm [16] only uses one StationaryPoint
operation, producing two universal quantifiers from two fixed players. Thus,

16 X. Deng et al.

LegoNE can only exploit the interplay between two specific players. Compared
to Algorithm 1, the previous best algorithm constrains the approximation bound
less effectively, and thus has a worse approximation bound.

5 Conclusion

This paper introduces LegoNE, a framework for designing algorithms for ap-
proximate NE. We demonstrate that LegoNE allows for a modular, Lego-brick
style approach to algorithm design and that the approximation analysis can be
fully performed by machine. Using this method, we improve the state-of-the-art
algorithm for approximate NE in three-player games from (0.6+ δ) to (0.56+ δ).

LegoNE establishes a new paradigm of human-machine collaboration for al-
gorithm design and analysis. In this model, humans concentrate on high-level
creative design, contributing diverse ideas, while machines take care of the de-
tailed, accurate analysis by following predefined patterns. This division allows
both to excel in their strengths, fostering more efficient and innovative algorithm
development.

Acknowledgments. This work is supported by National Science and Technology
Major Project (No. 2022ZD0114904) and Natural Science Foundation of China (Grant
No. 6212290003). The authors would like to thank Ruyi Ji and Yuhao Li for helpful
discussions. The authors would also like to thank the anonymous reviewers for their
valuable comments and suggestions.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Gurobi Optimization. https://www.gurobi.com/
2. Wolfram Mathematica: Modern Technical Computing. https://www.wolfram.

com/mathematica/
3. Abolhassani, M., Ehsani, S., Esfandiari, H., HajiAghayi, M., Kleinberg, R., Lucier,

B.: Beating 1-1/e for ordered prophets. In: Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing. pp. 61–71. ACM, Montreal Canada
(Jun 2017). https://doi.org/10.1145/3055399.3055479

4. Babichenko, Y., Barman, S., Peretz, R.: Empirical Distribution of Equilibrium
Play and Its Testing Application. Mathematics of Operations Research 42(1), 15–
29 (Jan 2017). https://doi.org/10.1287/moor.2016.0794

5. Bosse, H., Byrka, J., Markakis, E.: New Algorithms for Approximate Nash Equi-
libria in Bimatrix Games. In: Deng, X., Graham, F.C. (eds.) Internet and Network
Economics, Third International Workshop, WINE 2007, December 12-14, Proceed-
ings. Lecture Notes in Computer Science, vol. 4858, pp. 17–29. Springer, San Diego,
CA, USA (2007). https://doi.org/10.1007/978-3-540-77105-0_6

6. Bosse, H., Byrka, J., Markakis, E.: New algorithms for approximate Nash equilibria
in bimatrix games. Theoretical Computer Science 411(1), 164–173 (Jan 2010).
https://doi.org/10.1016/j.tcs.2009.09.023

https://www.gurobi.com/
https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
https://doi.org/10.1145/3055399.3055479
https://doi.org/10.1287/moor.2016.0794
https://doi.org/10.1007/978-3-540-77105-0_6
https://doi.org/10.1016/j.tcs.2009.09.023

A Computer-aided Approach for Approximate Nash Equilibria 17

7. Bubna, A., Chiplunkar, A.: Prophet Inequality: Order selection beats random or-
der. In: Leyton-Brown, K., Hartline, J.D., Samuelson, L. (eds.) Proceedings of the
24th ACM Conference on Economics and Computation, EC 2023, London, United
Kingdom, July 9-12, 2023. pp. 302–336. ACM (2023). https://doi.org/10.1145/
3580507.3597687

8. Cai, Y., Wu, J.: On the Optimal Fixed-Price Mechanism in Bilateral Trade. In:
Proceedings of the 55th Annual ACM Symposium on Theory of Computing. pp.
737–750. STOC 2023, Association for Computing Machinery, New York, NY, USA
(Jun 2023). https://doi.org/10.1145/3564246.3585171

9. Caviness, B.F., Johnson, J.R.: Quantifier Elimination and Cylindrical Algebraic
Decomposition. Springer Science & Business Media (2012)

10. Chen, X., Deng, X., Teng, S.H.: Settling the complexity of computing two-player
Nash equilibria. J. ACM 56(3), 14:1–14:57 (2009). https://doi.org/10.1145/
1516512.1516516

11. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical alge-
braic decompostion. In: Brakhage, H. (ed.) Automata Theory and Formal Lan-
guages. pp. 134–183. Springer, Berlin, Heidelberg (1975). https://doi.org/10.
1007/3-540-07407-4_17

12. Correa, J.R., Saona, R., Ziliotto, B.: Prophet Secretary Through Blind Strategies.
Mathematical Programming 190(1), 483–521 (2021). https://doi.org/10.1007/
S10107-020-01544-8

13. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The Complexity of Comput-
ing a Nash Equilibrium. SIAM Journal on Computing 39(1), 195–259 (Jan 2009).
https://doi.org/10.1137/070699652

14. Daskalakis, C., Mehta, A., Papadimitriou, C.: Progress in approximate nash equi-
libria. In: Proceedings of the 8th ACM Conference on Electronic Commerce. pp.
355–358. ACM, San Diego California USA (Jun 2007). https://doi.org/10.1145/
1250910.1250962

15. Daskalakis, C., Mehta, A., Papadimitriou, C.H.: A Note on Approximate Nash
Equilibria. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.) Internet
and Network Economics, Second International Workshop, WINE 2006, December
15-17, Proceedings. Lecture Notes in Computer Science, vol. 4286, pp. 297–306.
Springer, Patras, Greece (2006). https://doi.org/10.1007/11944874_27

16. Deligkas, A., Fasoulakis, M., Markakis, E.: A Polynomial-Time Algorithm for
1/3-Approximate Nash Equilibria in Bimatrix Games. In: Chechik, S., Navarro,
G., Rotenberg, E., Herman, G. (eds.) 30th Annual European Symposium on Al-
gorithms, ESA 2022, September 5-9. LIPIcs, vol. 244, pp. 41:1–41:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, Berlin/Potsdam, Germany (2022).
https://doi.org/10.4230/LIPIcs.ESA.2022.41

17. Deligkas, A., Fearnley, J., Savani, R., Spirakis, P.: Computing Approximate Nash
Equilibria in Polymatrix Games. Algorithmica 77(2), 487–514 (Feb 2017). https:
//doi.org/10.1007/s00453-015-0078-7

18. Etessami, K., Yannakakis, M.: On the Complexity of Nash Equilibria and Other
Fixed Points. SIAM Journal on Computing 39(6), 2531–2597 (Jan 2010). https:
//doi.org/10.1137/080720826

19. Fahrbach, M., Huang, Z., Tao, R., Zadimoghaddam, M.: Edge-Weighted Online
Bipartite Matching. J. ACM 69(6), 45:1–45:35 (Nov 2022). https://doi.org/10.
1145/3556971

20. Floyd, R.W.: Assigning Meanings to Programs. In: Colburn, T.R., Fetzer, J.H.,
Rankin, T.L. (eds.) Program Verification: Fundamental Issues in Computer Science,

https://doi.org/10.1145/3580507.3597687
https://doi.org/10.1145/3580507.3597687
https://doi.org/10.1145/3564246.3585171
https://doi.org/10.1145/1516512.1516516
https://doi.org/10.1145/1516512.1516516
https://doi.org/10.1007/3-540-07407-4_17
https://doi.org/10.1007/3-540-07407-4_17
https://doi.org/10.1007/S10107-020-01544-8
https://doi.org/10.1007/S10107-020-01544-8
https://doi.org/10.1137/070699652
https://doi.org/10.1145/1250910.1250962
https://doi.org/10.1145/1250910.1250962
https://doi.org/10.1007/11944874_27
https://doi.org/10.4230/LIPIcs.ESA.2022.41
https://doi.org/10.1007/s00453-015-0078-7
https://doi.org/10.1007/s00453-015-0078-7
https://doi.org/10.1137/080720826
https://doi.org/10.1137/080720826
https://doi.org/10.1145/3556971
https://doi.org/10.1145/3556971

18 X. Deng et al.

pp. 65–81. Springer Netherlands, Dordrecht (1993). https://doi.org/10.1007/
978-94-011-1793-7_4

21. Hémon, S., De Rougemont, M., Santha, M.: Approximate Nash Equilibria for
Multi-player Games. In: Monien, B., Schroeder, U.P. (eds.) Algorithmic Game The-
ory, vol. 4997, pp. 267–278. Springer Berlin Heidelberg, Berlin, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-79309-0_24

22. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications of
the ACM 12(10), 576–580 (Oct 1969). https://doi.org/10.1145/363235.363259

23. Jaillet, P., Lu, X.: Online Stochastic Matching: New Algorithms with Better
Bounds. Mathematics of Operations Research 39(3), 624–646 (Aug 2014). https:
//doi.org/10.1287/moor.2013.0621

24. Kontogiannis, S.C., Panagopoulou, P.N., Spirakis, P.G.: Polynomial Algorithms for
Approximating Nash Equilibria of Bimatrix Games. In: Spirakis, P.G., Mavroni-
colas, M., Kontogiannis, S.C. (eds.) Internet and Network Economics, Second In-
ternational Workshop, WINE 2006, December 15-17, Proceedings. Lecture Notes
in Computer Science, vol. 4286, pp. 286–296. Springer, Patras, Greece (2006).
https://doi.org/10.1007/11944874_26

25. Lipton, R.J., Markakis, E., Mehta, A.: Playing large games using simple strategies.
In: Proceedings of the 4th ACM Conference on Electronic Commerce. pp. 36–41
(2003)

26. Liu, Z., Ren, Z., Wang, Z.: Improved Approximation Ratios of Fixed-Price Mech-
anisms in Bilateral Trades. In: Proceedings of the 55th Annual ACM Symposium
on Theory of Computing. pp. 751–760. STOC 2023, Association for Computing
Machinery, New York, NY, USA (Jun 2023). https://doi.org/10.1145/3564246.
3585160

27. Nash, J.: Non-Cooperative Games. Annals of Mathematics 54(2), 286–295 (1951)
28. Peng, B., Tang, Z.G.: Order Selection Prophet Inequality: From Threshold Opti-

mization to Arrival Time Design. In: 63rd IEEE Annual Symposium on Founda-
tions of Computer Science, FOCS 2022, Denver, CO, USA, October 31 - November
3, 2022. pp. 171–178. IEEE (2022). https://doi.org/10.1109/FOCS54457.2022.
00023

29. Rubinstein, A.: Settling the Complexity of Computing Approximate Two-Player
Nash Equilibria. In: 2016 IEEE 57th Annual Symposium on Foundations of Com-
puter Science (FOCS). pp. 258–265 (Oct 2016). https://doi.org/10.1109/FOCS.
2016.35

30. Tarski, A., McKinsey, J.C.C.: A Decision Method for Elementary Algebra and
Geometry. University of California Press, dgo - digital original, 1 edn. (1951).
https://doi.org/10.2307/jj.8501420

31. Tsaknakis, H., Spirakis, P.G.: An Optimization Approach for Approximate Nash
Equilibria. In: Deng, X., Graham, F.C. (eds.) Internet and Network Economics,
Third International Workshop, WINE 2007, December 12-14, Proceedings. Lecture
Notes in Computer Science, vol. 4858, pp. 42–56. Springer, San Diego, CA, USA
(2007). https://doi.org/10.1007/978-3-540-77105-0_8

32. Van Dalen, D.: Logic and Structure. Universitext, Springer, London (2013). https:
//doi.org/10.1007/978-1-4471-4558-5

33. Williams, V.V., Xu, Y., Xu, Z., Zhou, R.: New Bounds for Matrix Multiplica-
tion: From Alpha to Omega. In: Proceedings of the 2024 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 3792–3835. Proceedings, Society
for Industrial and Applied Mathematics (Jan 2024). https://doi.org/10.1137/1.
9781611977912.134

https://doi.org/10.1007/978-94-011-1793-7_4
https://doi.org/10.1007/978-94-011-1793-7_4
https://doi.org/10.1007/978-3-540-79309-0_24
https://doi.org/10.1145/363235.363259
https://doi.org/10.1287/moor.2013.0621
https://doi.org/10.1287/moor.2013.0621
https://doi.org/10.1007/11944874_26
https://doi.org/10.1145/3564246.3585160
https://doi.org/10.1145/3564246.3585160
https://doi.org/10.1109/FOCS54457.2022.00023
https://doi.org/10.1109/FOCS54457.2022.00023
https://doi.org/10.1109/FOCS.2016.35
https://doi.org/10.1109/FOCS.2016.35
https://doi.org/10.2307/jj.8501420
https://doi.org/10.1007/978-3-540-77105-0_8
https://doi.org/10.1007/978-1-4471-4558-5
https://doi.org/10.1007/978-1-4471-4558-5
https://doi.org/10.1137/1.9781611977912.134
https://doi.org/10.1137/1.9781611977912.134

	A Computer-aided Approach for Approximate Nash Equilibria

